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Résumé — Causes et conséquences des incertitudes dans l’analyse de faciès sismiques pour la
caractérisation et le monitoring de réservoir — Les techniques mutivariables probabilistes de recon-
naissance des formes comme l'analyse discriminante proposent des solutions efficaces pour l’interpréta-
tion des données sismiques en termes de propriétés réservoir. Ces techniques permettent de calibrer une
relation mathématique entre une information sismique locale (voxel sismique ou portion de trace extrait
au niveau d’un réservoir) qui est décrite par un ensemble de caractéristiques ou attributs, et un ensemble
pré-défini de classes appelées faciès sismiques. Dans le contexte de l’interprétation de données sismiques
3D, l’analyse discriminante fournit une carte (éventuellement un volume) de faciès le plus probable, per-
mettant de décrire les principales hétérogénéités du réservoir détectables par la sismique. Ces dernières
années, se sont également développées des applications de cette technique au monitoring sismique de
réservoir. Dans ce dernier cas, chaque campagne sismique est interprétée en termes de faciès sismiques et
les variations de l’interprétation d’une campagne à l’autre sont alors interprétées en termes de change-
ments physiques du réservoir liés à la production.

L’analyse discriminante étant une méthode probabiliste, cela lui permet d’évaluer en partie l’incertitude
associée à l’interprétation, cette probabilité pouvant être assimilée à une mesure de la confiance dans le
classement de l’objet sismique. Cependant, cette vision de l’incertitude n’est que partielle. Dans ce
papier, nous présentons trois autres aspects de l’incertitude intervenant dans l’analyse de faciès sis-
miques, et qui ne sont pas pris en compte par le modèle probabiliste utilisé. Le premier aspect est lié à la
prise en compte des erreurs de mesures. Pour étudier la conséquence de telles erreurs sur le résultat du
classement, nous proposons une méthodologie combinant calculs probabiliste et arithmétique d’inter-
valles, que nous appelons analyse discriminante par intervalles. Les deux autres aspects sont liés à l’inter-
prétation des faciès sismiques en termes de changement fluide (dans le cas de l’interprétation de données
sismiques 4D) ou d’hétérogénéités réservoir (dans le cas d’interprétation de la sismique 3D). Du fait de la
différence de résolution entre la donnée sismique et les hétérogénéités réelles du réservoir, à une interpré-
tation en facies sismique peuvent correspondre des scenarii géologiques décrits à l’échelle fine très diffé-
rents. Nous montrerons comment la méthode des pseudo-puits peut-être utilisée pour mettre en évidence
cette diversité d’interprétations. Nous montrerons également comment l’utilisation de la modélisation sis-
mique peut, notamment dans le cas du monitoring sismique, aider à l’interprétation.

Abstract — Uncertainties in Seismic Facies Analysis for Reservoir Characterisation or Monitoring:
Causes and Consequences — Multivariate probabilistic pattern recognition methods such as discrimi-
nant analysis are powerful for interpreting seismic data in terms of reservoir properties. They consist 
of calibrating a mathematical relationship between local seismic information (seismic voxels or pieces of
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INTRODUCTION

Among the different techniques that have been developed for
seismic reservoir characterisation and monitoring, seismic
facies analysis plays a particular role. This methodology is
based on pattern recognition techniques dedicated to interpret-
ing seismic objects extracted from seismic data (multi-attribute
voxels, or pieces of traces at a reservoir level) and described by
a number of characteristics, or seismic attributes in a set of
classes (Dumay and Fournier, 1988). These classes may be
themselves related to geological heterogeneities (sandstones
vs. shales) as in Bertrand et al. (2002), to petrophysical classes
defined by cut-off values (e.g. porosity below 10%) or to fluid
properties (Lucet and Fournier, 2001). More generally, and
due to the limited resolution of seismic data, seismic facies
correspond to a combination of several of these factors. In the
last decade, seismic facies analysis has been applied to many
different issues, from reservoir characterisation (Nivlet et al.,
2003) to seismic monitoring (Lucet and Fournier, 2001) and
seismic anomaly detection (Marfurt, 2006).

A particularly interesting aspect of seismic facies is that
this methodology allows one to answer jointly two types of
questions, through the use of supervised and unsupervised
methodologies:
– Supervised methodology aims at evaluating how similar

seismic objects are to pre-defined groups, or training
classes, which are formed of collections of already inter-
preted objects. For instance, these objects may be
extracted close to cored well locations, where we have a
direct access to local reservoir heterogeneity. 

– Unsupervised methodology aims at detecting groups of
objects with similar characteristics among all the seismic
objects. This methodology allows the detection of seismic
facies, which could have been missed by the training classes.

Beyond the interpretation that these techniques provide of
seismic data, some of their implementations can also evaluate
the uncertainty associated with the interpretation. For
instance, discriminant analysis (Hand, 1981) is a supervised
statistical technique, where the degree of similarity between
seismic objects and training classes is expressed under the
form of assignment probabilities. When the assignment prob-
ability of a particular seismic facies is close to 1, it will give
high confidence to the interpretation. On the contrary, when
all the assignment probabilities associated with a given seis-
mic object are low, the interpretation will be considered as
less reliable. This uncertainty evaluation is very important,
but also partial and incomplete. In this paper, we will show
different aspects of uncertainties, which are not correctly
handled by classical probabilities. 

The first aspect is associated with seismic measurement
error propagations: techniques such as discriminant analysis
assume that seismic measurements are error-free. In reality,
this assumption is far from being verified, due to the presence
of different kinds of noises, which may be linked with acqui-
sition, processing or wave propagation. We will show how to
propagate seismic measurement errors by a combination of
discriminant analysis with interval analysis (Moore, 1966). 

A second aspect of uncertainty is the interpretation of seis-
mic facies: even when performing supervised analysis, seis-
mic facies analysis results may still need to be interpreted.
This is the case for 4D seismic interpretation, where we need
to understand a posteriori the changes in seismic facies inter-
pretation from one seismic vintage to another. To address this
issue, we need to combine 1D seismic modelling with pro-
duction scenario assumptions. 

Lastly, seismic facies analysis averages information verti-
cally and extracts from this information the dominant geolog-
ical or petrophysical character. However, this interpretation
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traces extracted at a reservoir level), characterised by a set of measurements, named seismic attributes,
and a pre-defined set of classes, named seismic facies. In the context of seismic reservoir characterisa-
tion, this methodology provides a map or a volume of most probable facies, which describes the main
reservoir heterogeneities. During the last decade, another application of this technique to the interpreta-
tion of 4D seismic data has also emerged: in this case, each seismic vintage is interpreted in terms of
seismic facies, and differences in the interpretation of one vintage from another are correlated a posteri-
ori to production effects such as fluid substitutions or pressure variations.

As a probabilistic method, discriminant analysis allows the evaluation, at least partly, of uncertainty
associated with seismic facies interpretation, and assignment probabilities computed by the methodology
are a measure of the confidence of the interpretation. However, this uncertainty evaluation is only par-
tial. In this paper, we will describe three other aspects of uncertainties, which are not correctly handled
by classical discriminant analysis. The first aspect is linked with measurement errors. To propagate this
type of error in seismic facies analysis, we have had to develop a methodology based on a combination of
discriminant analysis and interval analysis. The other two aspects of uncertainty are linked with the
interpretation of seismic facies. Due to the difference in resolution between seismic data in real reservoir
heterogeneities, one seismic facies may correspond to several different fine-scale geological or dynamic
scenarios. We will show in this paper how pseudo-well methodology, as well as seismic modelling (in the
context of 4D interpretation) can help address this issue
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may not be sufficient to characterise critical heterogeneities
of reservoirs, which are heterogeneities that control fluid
flow and, therefore, recovery factor. We will show how
pseudo-well methodology (Joseph et al., 1999) can help in
displaying the different fine-scale heterogeneities that a sin-
gle seismic facies can correspond to.

These different aspects of uncertainties will be discussed
in two case studies. The first one is an effective 4D data
interpretation: steam-assisted gravity drainage technology
was used in a Canadian field in order to make the heavy oil
mobile and producible. A baseline 3D survey describing 
initial reservoir conditions was first recorded. After, respec-
tively, 18 and 24 months of continuous steam injection, two
subsequent surveys were recorded in order to investigate the
steam chamber localisation. Seismic facies analysis was then
processed (Lucet and Fournier, 2001), the results of which
will first be briefly commented on. The paper will then focus
on analysing various aspects of uncertainties linked with
these facies maps.

The last part of the paper, about fine-scale heterogeneity
evaluation, is developed on the synthetic case study.

1 SEISMIC FACIES ANALYSIS 
FROM 4D RAW AMPLITUDES

Seismic facies analysis is a generic terminology to describe
pattern recognition methods, which map seismic traces
described by a set of characteristics or attributes extracted at
the reservoir level, to a set of categories, or seismic facies
(Dumay and Fournier, 1988). The calibrated relationship
between attributes and facies is called a classification func-
tion. In the 4D context, attributes may be amplitude differ-
ences between base and subsequent monitor surveys, or raw
amplitudes extracted from each survey. The methodology to
interpret 4D seismic traces in terms of seismic facies is com-
posed of the following steps:
– extraction of seismic attributes from each seismic trace in

each seismic survey (11 successive amplitudes starting
from the bottom of the reservoir);

– unsupervised seismic facies analysis to find the most 
frequent trace patterns, or seismic facies (8 seismic facies
defined);

– selection of traces which are most representative from
each seismic facies; selected traces are used as training
samples for supervised facies analysis;

– supervised seismic facies analysis, consisting of:
. testing the quality of the calibrated classification function

to identify seismic facies, 
. classifying all the traces from any survey with this cali-

brated classification function.
To test the quality of the classification function, it is 

possible to compare in the training samples the initial seismic
facies with the predicted one. This operation has led to values
greater than 80% of correctly reassigned samples for each
seismic facies. The calibrated classification function is there-
fore able to discriminate between the 8 facies defined. The last
step of this workflow produces 8 probability maps p(Ci | x) for
each survey, where Ci is one of the 8 seismic facies and x, the
11-dimension attribute array extracted at a given position
(Line; CDP). Finally, the results presented in Figure 1 are the
most probable seismic facies maps. The interpretation of these
maps will be discussed in detail later in the paper.

2 CLASSICAL ESTIMATION OF UNCERTAINTY

In the former analysis, Figure 1 represents the most probable
seismic facies map: the seismic facies assigned to each trace
has a maximal probability p(Ci | x). This probability, which is
also called probability of good assignment, is a first view of
uncertainties: the higher it is, the most confident the inter-
preter is with the assigned seismic facies. Figure 2 represents
the 3 probabilities of good assignment maps. These probabil-
ities are generally high, except at the boundaries between
seismic facies, which indicates an overall good level of confi-
dence in the interpretation. The lower probability traces cor-
respond to transition zones between several facies, and are
more difficult to assign precisely.
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Figure 1

Seismic facies maps.
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What kind of uncertainty do these probability maps 
capture? To answer this question, we have to recall that they
are related to multivariate conditional probability density
functions (CPDF) p(x | Ci) through Bayes’ rule:

(1)

where p(Ci) are the a priori probabilities for each seismic
facies.

The CPDFs are computed from the training samples.
When the number of training samples in each seismic facies
is sufficient, non-parametric algorithms can be used to esti-
mate CPDFs, to account for non-linear patterns, which is
quite common in seismic interpretation. Silverman (1986)
reviews some of these classical algorithms, among which are
the kernel methods or the K-Nearest Neighbour. Otherwise,
we have to make parametric (and simplifying) assumptions
about the CPDFs: for example, we assume that CPDFs are
multivariate gaussian with a conditional mean mi and a
covariance matrix Si:

(2)

In any case, the final probabilities p(Ci | x) depend on the
assumptions made about the CPDFs, which have nothing to
do with measurement errors in seismic attributes. 

3 IMPACT OF MEASUREMENT ERRORS

In order to evaluate the impact of measurement errors, we
used a technique based on a combination of discriminant
analysis with interval analysis, which was first exposed in
Nivlet et al. (2001). In this approach, seismic attributes x are

supposed to be enclosed within a multivariate interval 
(or box) noted [x]. The issue is to evaluate successively 
the ranges for the multivariate CPDFs p(x | Ci), noted 
[p]([x] | Ci); the ranges for the probabilities p(Ci | x), noted
[p](Ci | [x]); and the set of possible assignments {Cj}, when
attribute arrays vary within boxes [x]. For example, under the
Gaussian assumption, we want to evaluate the following range:

(3)

The interval analysis techniques exposed in Moore (1966)
give an approximate but realistic outer estimate for this inter-
val. Then, Bayes’ rule is extended to interval values using
interval analysis expressions to compute the following
expression:

(4)

Finally, the uncertain trace is assigned to the seismic facies,
which has a dominating probability interval [p](Ci | [x]) when
it exists. When this interval does not exist because of overlap-
ping between different [p](Ci | [x]), all the seismic facies with
non-dominating probability intervals are withdrawn from the
solution set. The remaining seismic facies are the possible
assignment for the uncertain seismic trace [x].

In order to run this workflow, we first have to evaluate the
uncertainties in seismic attributes [x]. Generally, these uncer-
tainties are hardly ever known. However, in a 4D context, it
is possible to examine inter-survey amplitude differences in
zones, which are not impacted by reservoir production (such
as zones above the reservoir). Normally, the amplitudes
within these zones should not vary, in which case data would
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Figure 2

Probability of good assignment maps associated with seismic facies maps.
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be perfectly repeatable. However, in real case studies, it is
never the case, even after specific 4D reprocessing of seismic
traces (Ross et al., 1996): Figure 3 shows the map of mean
inter-survey amplitude differences evaluated from a constant
time window extracted 100 ms over the produced reservoir
interval. This map displays a strong horizontal non-stationarity.

Figure 3

Mean horizontal variations of seismic amplitudes.

After checking the vertical stationarity of these uncertain-
ties, and after checking that these uncertainties are not corre-
lated with the mean inter-survey amplitude variations at the
reservoir level, it was decided to consider this map as a good
representation of data uncertainty.

To study the influence of seismic amplitude uncertainties
on the interpretation results, we used the same training 
samples as those used in the first part of the paper. As in the
standard classifying procedure, the first question we address
is to know whether the training samples can be discriminated
or not, among the 8 pre-defined seismic facies. Trying to
reassign, with the calibrated interval classification function,
the training samples to their original seismic facies does this.
In Table 1, the lower bounds are the proportions of seismic
traces correctly and uniquely reassigned by the interval algo-
rithm, whereas the upper bounds correspond to the propor-
tions of seismic traces where the interval classification analy-
sis algorithm reassigns them to several classes, among which
there is the correct class. These seismic traces are imprecisely
reassigned.

The width of these intervals quantifies the impact of the
uncertainties on the quality of the discriminant function. For
example, seismic facies 2 has a wide interval, indicating that
it cannot be precisely discriminated from the other ones. For
the other seismic facies, the impact of the uncertainties is low
(facies 3, 4, 6 and 7) to moderate (facies 1, 5 and 8).

The interval classification function is then used to predict
the seismic facies for each seismic trace and each of the three
surveys. We have represented in Figure 4 only the traces
uniquely assigned. This figure allows a direct visualisation of
the bins for which the seismic facies interpretation remains
reliable even after taking the data uncertainties into account.
We first notice that the interval algorithm uniquely assigns the
great majority of the seismic traces. The uncertainties thus
have a moderate effect on the assignment process.
Furthermore, the interpretation of the first base survey is very
precise, which indicates that the heterogeneity of the reservoir
before steam injection is very well described by the discrimi-
nation among 8 seismic facies. After steam injection, the inter-
pretation of the southern part of the reservoir does not remain
precise. This lack of stability is a little disappointing, because
changes in seismic facies noted in this zone may be connected
with the growth of the steam chamber. Yet, Figure 5 attenuates
this pessimism. It maps the possible extensions of seismic
facies 1, 2 and 6, where the interval discriminant analysis pre-
dicted a multiple facies. This figure confirms that seismic
facies 6 disappears after steam injection. Moreover, the south-
ern part of the reservoir can be assigned only to seismic facies
1 or 2. In both cases, these facies are related to swept sand-
stones. Taking into account uncertainties thus has an impact on
the interpretation between the seismic facies 1 and 2. 

4 UNCERTAINTIES IN THE PHYSICAL
INTERPRETATION OF SEISMIC FACIES CHANGES

The third aspect of uncertainties in the 4D workflow derives
from the physical interpretation and validation of the changes in
seismic facies predicted during the production. This step is done
at the well position by a feasibility study, which considers log
data recorded before the start of the production and dynamic
data (pressure and saturation) as inputs to a petro-acoustic tool-
box to model changes in log data during the production. Then, a
seismic modelling step allows the computing of synthetic traces
corresponding to each seismic survey. Finally, a classification
of these traces by statistical pattern recognition models changes
in seismic facies during production. 
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TABLE 1

Correctly reassigned training sample proportion by interval discriminant analysis

Seismic facies 1 2 3 4 5 6 7 8

% [73;100] [38;100] [90;100] [84;100] [72;100] [93;100] [95;100] [65;100]
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Figure 4

Impact of 4D non-repeatability on the result of seismic facies analysis.

Figure 5

Impact of 4D non-repeatability on the result of seismic facies analysis: indicator functions for seismic facies 1, 2 and 6 in each survey (left =
base survey; centre and right = repetitive surveys).
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In the presented case study, one well, W1, was drilled in
the northern part of the zone. In this well, only non-reservoir
facies were observed. The modelling step led to the synthetic
trace shown in Figure 5, which is very similar to the typical
traces representative of seismic facies 3 or 7. For this reason,
seismic facies 3 and 7 were associated with non-reservoir
facies. To corroborate this observation, we notice that in this
zone, seismic facies assignment does not change between the
3 seismic surveys. Other seismic facies in the vicinity of this
zone (seismic facies 4, 5 and 8) are also interpreted as non-
reservoir facies, although we do not have well data to con-
firm this statement.

Seismic facies 1 and 2 were also interpreted with wells:
well W2 (Fig. 6) is characterised by a thick series of uncon-
solidated sandstones. Its associated seismic trace is very simi-

lar to the typical trace from seismic facies 1. Well W3 
(Fig. 7) is characterised by thinner unconsolidated sandstones
with interbedded sandstones at the top of it and is clearly
related to seismic facies 2. This zone is interpreted as an
intermediate reservoir.

In order to interpret the changes in lithofacies, we simu-
lated both in well W2 and W3 an invasion of the reservoir by
steam. The synthetic trace from well W2 is nearly unchanged,
which explains why no change is observed in the interpreta-
tion of massive reservoir sandstones in Figure 1. For well W3,
there are two possible behaviours: if the steam invades only
the unconsolidated reservoir, the synthetic trace is reassigned
to seismic facies 6, whereas when the invasion concerns all
the sandstone series (unconsolidated + interbedded), the syn-
thetic trace is reassigned to facies 1. From these observations,
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Figure 6

Impedance and synthetic trace associated with well W1 
(non-reservoir) compared with traces representative of seis-
mic facies 3 and 7.

Figure 7

Impedance and synthetic trace associated with well W2 
(massive reservoir) before and after steam invasion compared
with trace representative of seismic facies 1.

Facies 6

Well W3
Impedance syntheticFacies 2 Facies 1

Massive 
sandstones

Interbedded 
sandstones

Figure 8

Impedance and synthetic trace associated with well W3 (intermediate reservoir) before and after total or partial steam invasion of reservoir
compared with traces representative of seismic facies 1, 2 and 6.
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we can conclude that in the intermediate reservoirs, we are
able to identify partially swept zones from totally swept
zones. In the good reservoir zone, an uncertainty still remains,
because this facies is insensitive to its fluid content.

5 UNCERTAINTIES IN THE GEOLOGICAL
INTERPRETATION OF SEISMIC FACIES

When performing facies analysis on a particular reservoir
level, we integrate seismic information over a given time
window. The resulting seismic facies map is therefore an
average view of heterogeneities (which themselves may be
due to a combination of geological, fluid and diagenetic het-
erogeneities). If we want to go a little further in the character-
isation of reservoirs, we may want to characterise the distrib-
ution of geological heterogeneities on a fine scale
corresponding to each seismic facies. Addressing this issue
can then allow the computing of a fine-scale geological
model consistent with the seismic information, which may be
mandatory, for instance, for addressing fluid flow simulation
problems. For instance, Doligez et al. (2003) propose a
methodology of using seismic facies maps together with
assignment probability maps as a guide to interpolate vertical
proportion curves, which correspond to the average vertical
geological trend. In this approach, vertical proportion curves
derived from wells are duplicated in positions with similar
seismic facies and sufficiently high probability. The resulting
vertical proportion curve matrix, formed by the juxtaposition
of all the vertical proportion curves at any position of the
reservoir base map, is then used as a non-stationary con-
straint to the geological modelling, the fine-scale hetero-
geneities being described by a 3D variogram model.

In this paragraph, we intend to address a less general
issue. However, the presented methodology could potentially
improve the geological modelling phase. The issue is simply
to try to characterise vertical heterogeneity statistical distribu-
tions corresponding to each seismic facies. After having per-
formed seismic facies analysis, a first comparison may be
done at well positions. The problem is that in most cases,
well information is too scarce to characterise fully the variety
of geological vertical trends corresponding to a given sce-
nario. For instance, in the most probable seismic facies map
displayed in Figure 9, 5 seismic facies have been interpreted.
In the best case, we have only two wells falling in the same
seismic facies zone. In the worst case, we have no well, as for
the orange seismic facies.

In order to be able to have some plausible geological rep-
resentation corresponding to this seismic facies (and also in
order to have a more reliable estimation of the vertical varia-
tions in the other case), we propose to apply a pseudo-well
methodology (Joseph et al., 1999), which aims at generating
by geostatistical algorithms new well data, composed of pos-
sibly a lithological column and attached well logs. 

Figure 9

Example of most probable seismic facies map obtained from
amplitudes extracted at a reservoir level.

The algorithm that we propose is composed of 4 main
steps:
– Definition of well groups: the wells from each well group

are supposed to be drilled in the same geological setting.
This means that vertically, we should observe the same
sequences of sediments. During this phase, wells from the
same group should be easily correlated. When necessary,
correlation between these wells should account for
regional discontinuities (erosional surfaces, etc.) marked
at each well, these markers defining themselves as homo-
geneous units, in which the sedimentary process may be
described by a simple mechanism.

– Definition of (geo-)statistical constraints describing the
vertical succession of sediments in each geological unit:
these constraints concern first the geological facies them-
selves, through global facies proportions computed from
well data about each geological unit, or through vertical
proportion curves, which give the average facies vertical
evolution for a given geological unit. Then additional con-
straints may be added if necessary, describing the vertical
evolution of reservoir parameters such as velocities, densi-
ties, etc. These last properties are described in wells on a
fine scale from well logs. Constraints are expressed under
the form of global statistics, or global statistics for geolog-
ical facies (mean, variance, etc.), and spatial statistics such
as variograms, which are defined as the mean square of
property variations expressed as a function of the distance,
or lag, between these two points.
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– Geostatistical simulations of pseudo-wells: classical geo-
statistical simulation algorithms are used to simulate addi-
tional well data. Concerning facies, Sequential Indicator
Simulations (Deutsch and Journel, 1992) are used to pro-
duce random lithological columns which reproduce the
main statistics described in step 2.  Concerning the other
properties, other algorithms may be used, such as sequen-
tial Gaussian simulations, random simulations, etc. This
simulation step allows the generation of a number of well
data with geological facies and the attached well log
described on a fine scale. Figure  displays some of the
simulated lithofacies columns simulated from a well
group composed of the wells KS1 and KS5 displayed on
the left-hand side of Figure 10.

– Seismic attribute generation: from the simulated pseudo-
wells, the goal is now to generate seismic attribute traces.
The techniques involved to achieve this goal differ,
depending on the goal of the study. For instance, if seis-
mic amplitudes had been used during seismic facies analy-
sis, the following sequence would have to be used:
. upscaling and resampling and simulated acoustic

impedance pseudo-logs to the seismic scale;
. convolution of reflectivities derived from acoustic

impedances with a wavelet.
– The seismic traces generated from pseudo-well realisa-

tions are then used as if they were true seismic traces to be
interpreted by seismic facies analysis. The result of this
interpretation can be a single seismic facies representative
of a given reservoir level if seismic facies analysis had

been performed in 2D, or a column of seismic facies if
seismic facies analysis had been applied in 3D, directly on
seismic voxels.

– The different realisations of interpreted pseudo-wells are
then grouped according to the assigned seismic facies.
Figure 11 displays, for instance, all the lithofacies realisa-
tions associated with pseudo-wells that have been
assigned to the orange seismic facies. This analysis shows
that this orange facies corresponds mainly to an upward
trend from yellow facies to green and blue, corresponding
to a fining upward sequence. However, it also shows that
some dispersion exists around this general trend: the mas-
sive yellow reservoirs may be compartmentalised into two
or more sub-units.

CONCLUSION

We have shown in this paper the effects of different sources
of uncertainties on the results of a seismic facies analysis.
Traditionally, uncertainty is accounted for through proba-
bilistic computations. These probabilities reflect the partial
knowledge of the behaviour of a system: for instance, with
discriminant analysis, the main goal is to assign objects to
different classes, based on a calibration between attributes
and classes. Probabilities account for two uncertainty causes:
first, that the training sample does not cover the whole
attribute space, and second, that there may be partly inconsis-
tent information in the training sample. In some situations,
this source of uncertainty may be dominant. However, this
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Figure 10

Example of pseudo-wells simulated from the KS1 + KS5 well group.
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probabilistic approach has its limitations: it does not take into
account measurement errors. In the case of seismic data,
these errors may be, at least locally, very important. Their
causes may be diverse, from acquisition footprints to unwanted
wave propagation effects (multiples) or processing errors. We
have presented a way to incorporate these errors into classical
discriminant analysis. In the 4D example, we have shown that
these errors make the interpretation less certain, but also more
reliable. It can also help define the risk associated with the use
of 4D interpretation in reservoir management. The other types
of uncertainty are linked with the physical or geological inter-
pretation of seismic facies. A first way to tackle this issue is to
try to model seismic traces from available well data. In the 4D
case, we can try to model possible production scenarios and
therefore understand how the seismic signal evolves with time.
However, this approach is very qualitative. To be more quanti-
tative, we have presented a methodology based on pseudo-well
simulations. This methodology provides a way to display the
different possible vertical successions of sediments. Therefore,
it provides a way to have a more quantitative interpretation of
seismic traces and to facilitate their integration in reservoir
characterisation workflow. 
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