R. H. Stranglmaier and C. E. Roberts, Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises and Future Engine Applications, 1999.

H. Barths, C. Antony, and N. Peters, Three-dimensional Simulation of Pollutant Formation in a DI Diesel Engine Using Multiple Interactive Flamelets, 1998.

H. Barths, H. Pitsch, and N. Peters, Three-dimensional Simulation of DI Diesel Combustion and Pollutant Formation Using a Two-component Reference Fuel, Oil Gas Sci. Technol, vol.54, pp.233-244, 1999.

S. C. Kong and R. D. Reitz, Application of Detailed Chemistry and CFD for Predicting Direct Injection HCCI Engine Combustion and Emissions, Proceedings of 29th International Symposium on Combustion, vol.29, pp.663-669, 2003.

V. Gopalakrishnan and J. Abraham, Computed NO and Soot Distribution in Turbulent Transient Jets under Diesel Conditions, Combust. Sci. Technol, vol.176, pp.603-641, 2004.

C. Huguet, C. Millet, P. Menegazzi, B. Martin, N. Chaumeix et al., Correlation between Kinetic Reactivity and Structural Changes for Catalytic and Non-catalytic Oxidation of Diesel Soot, 2005.

S. Martinot, P. Béard, J. Roesler, and A. Garo, Comparison and Coupling of Homogeneous Reactor and Flamelet Library Soot Modeling Approaches for Diesel Combustion, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00689526

M. A. Patterson, S. C. Kong, G. J. Hampson, and R. D. Reitz, Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NO x Emissions, 1994.

M. D. Smooke, M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall, Soot Formation in Laminar Diffusion Flames, Combust. Flame, vol.143, pp.613-628, 2005.

F. Tao, V. I. Golovitchev, and J. Chomak, A Phenomenological Model for the Prediction of Soot Formation in Diesel Spray Combustion, Combust. Flame, vol.136, pp.270-282, 2004.

A. Kazakov and D. E. Foster, Modeling of Soot Formation during DI Diesel Combustion Using a Multi-step Phenomenological Model, 1998.

S. Jay, P. Béard, and A. Pires-da-cruz, Modeling Coupled Processes of CO and Soot Formation and Oxidation for Conventional and HCCI Diesel Combustion, SAE Paper, 2007.

M. Zolver, D. Klahr, J. Bohbot, O. Laget, and A. Torres, Reactive CFD in Engines with a New Unstructured Parallel Solver, Oil Gas Sci. Technol, vol.58, pp.33-46, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02043842

O. Colin and A. Benkenida, The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion, Oil Gas Sci. Technol, vol.59, pp.593-609, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02017326

C. O. , Étude GSM D.C.1 2006-Modélisation Diesel, Phase 1 : Amélioration du modèle de mélange dans ECFM3Z, 2007.

O. Colin, A. Pires-da-cruz, and S. Jay, Detailed Chemistry Based Auto-ignition Model Including Low Temperature Phenomena Applied to 3-D Engine Calculations, Proceedings of the Combustion Institute, vol.30, pp.2649-2656, 2005.

V. Knop and S. Jay, Latest Developments in Gasoline Autoignition Modelling Applied to an Optical CAI? Engine, Oil Gas Sci. Technol, vol.61, pp.121-138, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02005786

P. Béard, Towards a Predictive Modeling of Transient Injection Conditions of Diesel Sprays in DID Engines, Proceedings of the ILASS Americas 18th Annual conference, 2005.

F. Buda, R. Bounaceur, V. Warth, P. A. Glaude, R. Fournet et al., Progress Toward a Unified Detailed Kinetic Model for the Auto-ignition of Alkanes from C4 to C10 between 600 and 1200 K, Combust. Flame, vol.142, pp.170-186, 2005.

D. J. Hautman, F. L. Dryer, K. P. Schug, and I. Glassman, A Multiple-step Overall Kinetic Mechanism for the Oxidation of Hydrocarbons, Combust. Sci. Technol, vol.25, pp.219-235, 1981.

J. Warnatz, Chemistry of High Temperature Oxidation of Alkanes up to Octane, Twentieth Symposium (International) on Combustion, pp.845-856, 1984.

H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, A Comprehensive Modeling Study of n-heptane Oxidation, Combust. Flame, vol.114, pp.149-177, 1998.

C. K. Westbrook, Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems, Twenty-eight Symposium (International) on Combustion, pp.1563-1577, 2000.

R. A. Dobbins, R. A. Fletcher, B. A. Benner, and S. Hoeft, Polycyclic Aromatic Hydrocarbons in Flames, Diesel Fuels and in Diesel Emissions, vol.144, pp.773-781, 2006.

S. Collura, N. Chaoui, A. Koch, and J. V. Weber, Diesel Soot Combustion: Influence of the Amount of Soluble Organic Fraction on the Kinetic Parameters, New Carbon Materials, vol.18, 2003.

H. Wang, Detailed Kinetic Modeling of Soot Particle Formation in Laminar Premixed Hydrocarbon Flames, 1992.

J. B. Heywood, Internal Combustion Engine Fundamentals, 1988.

Y. B. Zeldovitch, P. Y. Sadovnikov, and D. A. Frank-kamenetskii, Oxidation of Nitrogen in Combustion, 1947.

J. A. Miller and C. T. Bowman, Mechanism and Modeling of Nitrogen Chemistry in Combustion, Prog. Energ. Combust, vol.15, pp.287-338, 1989.

B. Walter and B. Gatellier, Development of the High Power NADI? Concept Using Dual Mode Diesel Combustion to Achieve Zero NO x and Particulate Emissions, 2002.

B. Walter and B. Gatellier, Near Zero NO x Emissions and High Fuel Efficiency Diesel Engine : the NADI? Concept Using Dual Mode Diesel Combustion, Oil Gas Sci. Technol, vol.58, pp.101-114, 2003.

A. Ranini, S. Potteau, and B. Gatellier, New Developments of the NADI? Concept to Improve Operating Range, Exhaust Emissions and Noise, THIESEL 2004 Conference on Thermoand Fluid Dynamic Processes in Diesel Engines, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02005782

B. Réveillé, A. Kleemann, V. Knop, and C. Habchi, Potential of Narrow Angle Direct Injection Diesel Engines for Clean Combustion: 3D CFD Analysis, 2006.