About the Acidity-Catalytic Activity Relationship in Ionic Liquids: Application to the Selective Isobutene Dimerization - Archive ouverte HAL Access content directly
Journal Articles Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles Year : 2009

About the Acidity-Catalytic Activity Relationship in Ionic Liquids: Application to the Selective Isobutene Dimerization

(1) , (1) , (1) , (2) , (2)
1
2
L. Magna
  • Function : Correspondent author
J. Bildé
  • Function : Author
T. Robert
  • Function : Author
B. Gilbert
  • Function : Author

Abstract

The Brønsted acidity level was evaluated for ionic liquids to which a strong acid has been added. As a first approach, the evaluation method was based on the determination of the Hammett acidity functions H0, using UV-Visible spectroscopy. The acidity of protons is mainly determined by their solvation state and consequently, the properties of protons depend on both the nature of the solvent and the nature and concentration of the acid. An apparent acidity scale was defined following this principle. It was found that, for the investigated ionic liquids, the cation does not play a dominant role on the acidity level ([BMIm] ~ [BHIm] ~ [ HNEt3] ), whereas changing the nature of the anion of the ionic liquid may lead to very different acidities ([ SbF6] > [ PF6] > [ BF4] > [ NTf2] > [OTf]). This “acidity scale” was tentatively compared with an “activity scale” obtained for the dimerization of isobutene into isooctenes. The tendencies concerning the cation effect were confirmed ([BMIm] ~ [BuMePyrr] ~ [ HNEt3] ). The anion effect in only partially validated with a different behaviour for NTf2 type ionic liquids ([ NTf2] ~ [ SbF6] > [ PF6] ~ [ BF4] > [OTf]). By an adequate choice of the ionic liquid, selectivity for isobutene dimers can reach 88 wt% (at 70% isobutene conversion) with possible recycling of the catalytic system without loss of activity and selectivity.
Fichier principal
Vignette du fichier
ogst08133.pdf (280.13 Ko) Télécharger le fichier
Origin : Publication funded by an institution
Loading...

Dates and versions

hal-02001586 , version 1 (31-01-2019)

Identifiers

Cite

L. Magna, J. Bildé, H. Olivier-Bourbigou, T. Robert, B. Gilbert. About the Acidity-Catalytic Activity Relationship in Ionic Liquids: Application to the Selective Isobutene Dimerization. Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, 2009, 64 (6), pp.669-679. ⟨10.2516/ogst/2009041⟩. ⟨hal-02001586⟩

Collections

IFP OGST
19 View
99 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More