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Safe- and eco-driving control for connected and
automated electric vehicles using analytical

state-constrained optimal solution
Jihun Han, Antonio Sciarretta, Luis Leon Ojeda, Giovanni De Nunzio, Laurent Thibault

Abstract—Speed advisory systems have been proposed for
connected vehicles in order to minimize energy consumption
over a planned route. However, for their practical diffusion,
these systems must adequately take into account the presence
of preceding vehicles. In this paper, a safe- and eco-driving
control system is proposed for connected and automated vehicles
to accelerate or decelerate optimally while guaranteeing vehicle
safety constraints. We define minimum inter-vehicle distance and
maximum road speed limit as state constraints, and formulate
an optimal control problem minimizing the energy consumption.
Then, an analytical state-constrained solution is derived for real-
time use. A feasible range of terminal conditions is established,
and such conditions are adjusted to guarantee the existence of
the analytical solution. The proposed system is evaluated through
simulation for various driving scenarios of the preceding vehicle.
Results show that it can significantly reduce energy consumption
and also avoid collision without increasing trip time. Moreover,
the proposed system can serve as an energy-efficient advanced
cruise control by setting a short prediction horizon.

Index Terms—Connected and automated vehicles, Electric
vehicles, Speed advisory system, Adaptive cruise control, Eco-
driving control, Optimal control.

I. INTRODUCTION

THANKS to the development of communication technolo-
gies (e.g. vehicle-to-vehicle, vehicle-to-infrastructure,

etc.) fused with on-board sensors (e.g. radar, lidar, vision
camera, etc.) and global navigation systems, vehicles have
been equipped with connectivity and automation technologies
over the past years. Connected and automated vehicles (CAVs)
have easier access to the required traffic information, therefore
they can be controlled more precisely compared to human-
driven vehicles. With these benefits, CAVs can reduce the
number of traffic accidents caused by human error and improve
traffic flow stability and throughput.

One of the automated functions, adaptive cruise control
(ACC), aims to track a desired speed while maintaining a
prescribed inter-vehicle distance. For heavy-duty vehicles, the
ACC can reduce inter-vehicle distance, thereby decreasing
energy consumption due to the decrease in aerodynamic
drag resistance. However, this energy saving benefit may
not be achieved for personal CAVs because the ACC may
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result in sub-optimal speed profiles with aggressive accelera-
tion/deceleration [1]. For this reason, optimization-based eco-
driving functions, which try to maximize energy efficiency,
have been recently added to ACC in CAVs.

In these energy-efficient ACC approaches, the conflicting
objectives of speed/distance tracking and energy efficiency
are merged in a single cost function to be minimized in
model predictive control (MPC) framework. MPC relies on a
prediction horizon over which an linear/nonlinear optimization
is performed [2], [3]. Nonlinear optimization methods outper-
form linear ones, but they increase computational time [4],
[5]. Although fast numerical algorithms based on Pontryagin’s
minimum principle have been recently proposed, they still
limit the prediction horizon that can be used in real-time [6],
[7], [8], [9].

Eco-driving techniques can also be employed for speed
advisory systems (SAS), which primarily define energy con-
sumption as a cost function to be minimized, allowing a
larger speed control range than in ACC [10]. In [11], [12],
[13], dynamic programming is used to compute optimal speed
trajectories as a reference for the driver, but this algorithm is
not suitable for real-time applications due to its high com-
putational time. In contrast, a few studies such as [14], [15],
[16] have attempted to derive and use closed-form optimal
speed trajectories. However, in these contributions, vehicle
safety constraints imposed by neighboring vehicles are not
considered. In other studies, such constraints are simplified
by coordinating trip times of all CAVs for special driving
scenarios, such as highway on-ramps [17] or urban traffic
intersections [18], [19].

The previous studies focusing on the SAS do not explore
the possibility of directly taking into account the presence
of the preceding vehicle as a state constraint. Thus, as an
extension to the ACC (vehicle safety) and the SAS (energy
efficiency), this paper is intended to investigate how to derive a
closed-form state-constrained optimal solution and to propose
a robust and computationally efficient MPC that ensures the
existence of an analytical solution. The optimization problem
will be formulated with the objective of minimizing the
energy expenditure of a CAV driving in a traffic stream, while
avoiding collisions and respecting the road speed limits.

The paper is organized as follows: Section 2 is a brief
summary of the safe- and eco-driving control problem. In
Section 3, derivation of the state-constrained solution is de-
scribed. Section 4 presents the feasible conditions for the state-
constrained optimal solution. In Section 5, several case studies
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are analyzed through simulation, and the results are discussed.
Finally, in Section 6, the conclusions drawn from this study
are presented.

II. SAFE- AND ECO-DRIVING CONTROL PROBLEM

A. System Model

To capture vehicle’s motion, as well as its energy efficiency
including the powertrain loss, a basic longitudinal model is
used:

ṡ = v, (1)
mv̇ = Ft − (Fa + Fr + Fg)− Fb,

= Ft − ρacdAfv2/2− crmg −mg sin(α(s))− Fb,(2)

where Ft, Fa, Fr, Fg , and Fb are the traction force at the
wheels, the aerodynamic drag resistance, the rolling resistance,
the hill climbing resistance, and the mechanical brake force,
respectively; s and v indicate the vehicle’s position and speed,
respectively; m is the vehicle mass, ρa is the external air
density, Af is the vehicle frontal area, cd is the aerodynamic
drag coefficient, cr is the rolling resistance coefficient, g is
the gravity acceleration, and α is the road slope as a function
of the position.

An electric vehicle is propelled by an electric motor con-
nected to a transmission. The traction force through the
transmission is described under the assumption of no slip at
the wheels, as follows:

Ft = (Tmη
sign(Tm)
t Rt)/r, (3)

where Tm is the motor torque, Rt is the transmission ratio, ηt
is the transmission efficiency, and r is the wheel radius.

Electric power consumed by the electric motor is usually
modeled as a tabulated function of the motor torque and speed
resulting from steady-state experimental data (motor map).
However, to derive the analytical optimal solution for online
implementation, the approximated closed-form expression [20]
is used,

Pm = Vaia = ωmTm + (Ra/k
2)T 2

m = b1vTm + b2T
2
m, (4)

where b1 := Rt/r, b2 := ra/k
2, Va, ia, and Ra are some

effective voltage, current, and resistance, respectively, and k
is the motor torque constant. Note that Va = iaRa + kωm,
ia = Tm/k, and the rotational motor speed is ωm = Rtv/r.

If the electrochemical power drained from or supplied to
the battery system is Pb, then the energy consumption of an
electric vehicle is computed by Ef =

∫ tf
0
Pbdt. In eco-driving

studies for electric vehicles, the electrochemical conversion
efficiency in the battery can be simplified to a constant value
or neglected [10]. Here, Pb is set to Pm.

B. Problem Statement

The main goal of the controller is to minimize the energy
consumption of the host electric vehicle, defined by (4), while
guaranteeing the vehicle safety. In this respect, a first state
inequality constraint is set by the requirement that the vehicle
speed cannot exceed the maximum speed limit (vmax),

h1(t) = v(t)− vmax ≤ 0, (5)

and a second constraint is set by the requirement that the inter-
vehicle distance is always larger than a minimum safe distance
(δs),

h2(t) = s(t)− (sp(t)− δs) ≤ 0, (6)

where sp is the position of the preceding vehicle.
The control inputs, Tm and Fb, are bounded as

Tm.min ≤ Tm(t) ≤ Tm.max, (7)
Fb.min ≤ Fb(t) ≤ 0. (8)

C. Model Predictive Control Problem Formulation

A model predictive control (MPC) approach is used to
solve the safe- and eco-driving control problem in real-time.
At every time step, the MPC computes an optimal control
trajectory over a finite prediction horizon (tp), and this process
with feedback of current vehicle information is repeated as the
prediction horizon recedes. If the control inputs are defined by
u := Tm and W := Fb/m, the MPC problem is formulated
using (1-8):

minimize J =

∫ t0+tp

t0

(b1vu+ b2u
2)dt, (9)

subject to ṡ = v, (10a)

v̇ = c1η
sign(u)
t u− (c2v

2 + c0)−W, (10b)
umin ≤ u(t) ≤ umax, (11a)
Wmin ≤W (t) ≤ 0, (11b)
h1(t) = v(t)− vmax ≤ 0, (12a)
h2(t) = s(t)− (sp(t)− δs) ≤ 0, (12b)

where c1 := Rt/(rm), c2 := ρaAfcd/(2m), and c0 := g(cr+
sin(α(s))), while t0 is the current time.

Initial and terminal state constraints are

s(t0) = s0, v(t0) = v0, (13)
s(t0 + tp) = S, v(t0 + tp) = V, (14)

where S is a desired terminal position, s0 is the current
position, v0 is the current speed, and V is a desired terminal
speed of the receding horizon.

The MPC solver is important to determine the real-time im-
plementability of the controller. Many studies have developed
efficient numerical algorithms, but they are still computation-
ally expensive, thereby limiting the prediction horizon that can
be used in real-time [21], [22]. In this paper, rather than using
numerical algorithms, state-contrained optimal solutions are
analytically derived under some assumptions, and used as the
solution to (9)-(14) at each time t0.

III. ANALYTICAL STATE-CONSTRAINED SOLUTION

For simplicity, the receding prediction horizon is expressed
as [0, tp] instead of [t0, t0 + tp]. To derive the analytical
solution, further assumptions are required: 1) no transmission
loss (ηt = 1), 2) no mechanical brake force (W = 0), 3)
no control input constraints (umax = −umin → ∞), and
4) constant acceleration of the preceding vehicle, defined by
ap(t) = ap(0) = ap.0 for t ∈ [0, tp], where ap.0 is updated at
every time step.
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A. Unconstrained Case

In absence of state inequality constraints, Hamiltonian func-
tion is first formed as

H = b1vu+ b2u
2 + λ1v + λ2(c1u− c0), (15)

where λ1 and λ2 are position and speed co-state variables,
respectively.

Then, the necessary optimality conditions (Pontryagin’s
minimum principle) are used to derive a two-point boundary
value problem. Following the derivation in [23], the optimal
control input can be expressed as a linear function of time,

u∗(t) = k1t+ k2, (16)

where k1 = (b1c0 + c1λ1.0)/(2b2), k2 = −(b1v0 +
c1λ2.0)/(2b2), with λ∗1(0) = λ1.0 and λ∗2(0) = λ2.0.

Using (16), the system dynamics can be integrated. Then,
enforcing the terminal constraints, s∗(tp) = S, v∗(tp) = V ,
a system of two linear equations in two unknowns (λ1.0 and
λ2.0) is obtained as[

S
V

]
=

[
s∗(tp)
v∗(tp)

]
= A

[
λ1.0

λ2.0

]
+B, (17)

where

A =
c21tp
12b2

[
t2p −3tp
3tp −6

]
, B =

1

12b2

[
B1

B2

]
, (18)

while B1 = b1c0c1t
3
p−3(2b2c0 + b1c1v0)t2p+ 12b2(v0tp+ s0)

and B2 = 3b1c0c1t
2
p − 6(2b2c0 + b1c1v0)tp + 12b2v0.

By solving it, the optimal speed trajectory is obtained as
a quadratic function of time (parabola), where the details are
given in [14].

B. State-constrained Case

Constraints in (12a) and (12b) are pure state inequality
constraints of the form h(x, t) ≤ 0, where x denotes the state
variables, therefore are not directly dependent on the control
variable. If h(x, t) = 0 for t ∈ [t1, t2] with t1 < t2, this
interval is called boundary interval, where the time, t1 (or
t2), to start (or end) the boundary interval is called an entry
time (or exit time). Furthermore, if the state trajectory touches
the boundary, this specific time is called a contact time. The
entry, exit, and contact times are called junction times.

Generally, there are two methods to handle the pure state
inequality constraints: the direct and the indirect adjoining
methods [24]. Of the two, the indirect adjoining method is
used in this work. If h(x, t) is of pth order, it is differentiated
p times with respect to time until the control variable explicitly
appears, and then h(p)(x, u, t) is adjoined to the Hamiltonian
with a multiplier µ to form the Lagrangian,

L(x, u, t) = H(x, u, t) + µh(p)(x, u, t), (19)

where µh(x, t) = 0, µ ≥ 0.
Imposing only h(p)(x, u, t) ≤ 0 whenever h(x, t) = 0 does

not prevent the trajectory from violating h(x, t) ≤ 0 because it
cannot guarantee that h(q)(x, t) ≤ 0 for q = 1, · · · , p−1. From
this fact, tangency conditions, Ψ = [h(0), h(1), · · · , h(p−1)]T =
0, must be added at the entry time [25]. Because the tangency

conditions form interior-point constraints, the necessary opti-
mality conditions are

u∗(t) = arg min
u∈Ω(x∗,t)

H(u∗, x∗, λ∗, t), (20)

ẋ∗(t) = L∗λ(u∗, x∗, λ∗, µ∗, t), (21)
λ̇∗(t) = L∗x(u∗, x∗, λ∗, µ∗, t), (22)

where µ∗h(p) = 0, µ∗ ≥ 0, and Ω = {h(p) ≤ 0 if h = 0},
while λ denotes co-state variables.

To satisfy the tangency conditions, the co-state variable may
be discontinuous at the entry time according to the following
jump conditions,

λ∗(τ−) = λ∗(τ+) +

p−1∑
j=0

πjh
(j)
x∗ (x∗, τ), (23)

H(τ−) = H(τ+)−
p−1∑
j=0

πjh
(j)
t (x∗, τ), (24)

where τ ∈ [0, tp] indicates the entry time, and πj (j =
0, · · · , p− 1) are multipliers for the tangency conditions.

To apply the above analytical approach to the safe- and
eco-driving control problem, the preceding vehicle’s position
must be predicted for all t ∈ [0, tp]. The position constraint is
rewritten using the assumption of constant acceleration,

h2(t) = s(t)− (sp.0 + vp.0t+ ap.0t
2/2), (25)

where vp(t) = vp.0 + ap.0t, while sp(0) = sp.0 and vp(0) =
vp.0 are the preceding vehicle’s position and speed measured
at t = 0. Note that δs is lumped in sp.0.

The speed and position constraints are of the first order
(p1 = 1) and of the second order (p2 = 2), respectively, where
h

(1)
1 = c1u − c0 and h

(2)
2 = c1u − c0 − ap.0. The resulting

tangency conditions are

Ψ1 = v(τ)− vmax = 0, (26)

Ψ2 =

[
s(τ)− (sp.0 + vp.0τ + ap.0τ

2/2)
v(τ)− (ap.0τ + vp.0)

]
= 0, (27)

where τ ∈ [0, tp] represents entry time among junction times.
The Lagrangian is formed as

L = H + µ1(c1u− c0) + µ2(c1u− c0 − ap.0), (28)

where µi = 0 if hi < 0, µi ≥ 0 if hi = 0 for i = 1, 2. Note
that the values of µi are always zero because of the continuous
optimal control input.

The jump conditions of the co-state variables are summa-
rized as follows. In the case of the first-order speed constraint,

λ∗1(τ−) = λ∗1(τ+), (29a)
λ∗2(τ−) = λ∗2(τ+) + π0.h1

, (29b)
H(τ−) = H(τ+), (29c)

where π0.h1 is a multiplier of h(0)
1 . In the case of the second-

order position constraint,

λ∗1(τ−) = λ∗1(τ+) + π0.h2 , (30a)
λ∗2(τ−) = λ∗2(τ+) + π1.h2 , (30b)
H(τ−) = H(τ+) + π0.h2(ap.0τ + vp.0) + π1.h2ap.0,

(30c)
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where π0.h2
and π1.h2

are the multipliers of h(0)
2 and h

(1)
2 ,

respectively.
In both cases, the jump parameters of speed co-state (π0.h1

and π1.h2
) are always zero because of the continuous optimal

control input. Furthermore, the active speed constraint does
not have a jump parameter of position co-state, and thus both
co-state variables are continuous without any jumps. On the
other hand, the position co-state in case of an active position
constraint must be discontinuous at the entry time because of
the non-zero jump parameter (π0.h2

6= 0).
There are three cases to consider depending on which state

constraint is active.
1) Speed-Only-Constrained Case. If the speed of the un-

constrained solution exceeds the maximum road speed limit,
a speed-constrained optimal solution must be computed. This
optimal control is defined by three phases,

u∗(t) =


k1t+ k2 [0, t1)
uc.v [t1, t2)

k1(t− t2) + uc.v [t2, tp]
, (31)

where k1 = (b1c0 + c1λ1.0)/(2b2), k2 = −(b1v0 +
c1λ2.0)/(2b2). The boundary control input, uc.v = c0/c1, is
defined by the condition on the boundary interval, h(1)

1 = 0.
A system of four nonlinear equations (u∗(t1) = uc.v ,

v∗(t1) = vmax, v∗(tp) = V , and s∗(tp) = S) in four
unknowns (λ1.0, λ2.0, t1, and t2) is obtained; a solution to
this system is

A1.1t
2
1 +A1.2t1 +A1.3 = 0, (32a)

t2 = (B1.1t1 +B1.2)/B1.3, (32b)

for 0 < t1 < t2 < tp, with

λ1.0 = C1.1 + C1.2/t
2
1, (33a)

λ2.0 = D1.1 +D1.2/t1, (33b)

where coefficients A’s, B’s, C’s, and D’s are given in Ap-
pendix A.

2) Position-Only-Constrained Case. If the inter-vehicle dis-
tance with the unconstrained solution is smaller than the min-
imum safe distance, a position-only-constrained solution must
be computed. As mentioned above, the position constraint
becomes active either on the boundary interval or at the contact
point depending on the activation condition of the mixed state
inequality constraints, h(2)

2 ≤ 0. In the case of the boundary
interval, the optimal control is defined by three phases,

u∗(t) =


k1t+ k2 [0, t1)
uc.s [t1, t2)

k3(t− t2) + uc.s [t2, tp]
(34)

where k1 and k2 have the same definition as in the previous
section, and k3 = k1 + c1π0.h2

/(2b2). The boundary control
input uc.s = (c0 + ap.0)/c1 is defined by the condition on the
boundary interval, h(2)

2 = 0.
A system of five nonlinear equations (u∗(t1) = uc.s,

v∗(t1) = vp(t1), s∗(t1) = sp(t1), v∗(tp) = V , and s∗(tp) =
S) in five unknowns (λ1.0, λ2.0, t1, t2, and π0.h2

) is obtained;
a solution to this system is

t1 = A2.b.1/A2.b.2, (35a)
t2 = B2.b.1/B2.b.2, (35b)

for 0 < t1 < t2 < tp, with

λ1.0 = C2.b.1 + C2.b.2/t
2
1, (36a)

λ2.0 = D2.b.1 +D2.b.2/t1, (36b)

π0.h2
=
E2.b.1 + (E2.b.2t

2
2 + E2.b.3t2 + E2.b.4)/t21

(t2 − tp)2
,(36c)

where coefficients A’s, B’s, C’s, D’s, and E’s are given in
Appendix B-1.

As the activation level of the position constraint becomes
looser, the boundary interval vanishes and becomes a contact
point. In this case, h(2)

2 < 0 is always satisfied, thus the
resulting optimal control has only two phases,

u∗(t) =

{
k1t+ k2 [0, t1)

k3(t− t1) + u∗(t1) [t1, tp]
, (37)

where k1, k2, and k3 have the same definition as in the
previous section.

A system of four nonlinear equations (v∗(t1) = vp(t1),
s∗(t1) = sp(t1), v∗(tp) = V , and s∗(tp) = S) in four
unknowns (λ1.0, λ2.0, t1, and π0.h2

) is obtained; a solution
to this system is

A2.c.1t
3
1 +A2.c.2t

2
1 +A2.c.3t1 +A2.c.4 = 0, (38)

for 0 < t1 < tp, with

λ1.0 = C2.c.1 + C2.c.2/t
2
1 + C2.c.3/t

3
1, (39)

λ2.0 = D2.c.1 +D2.c.2/t1 +D2.c.3/t
2
1, (40)

π0.h2
=
E2.c.1 + E2.c.2/t1 + E2.c.3/t

2
1 + E2.c.4/t

3
1

(t1 − tp)2
, (41)

where coefficients A’s, B’s, C’s, D’s, and E’s are given in
Appendix B-2.

3) Both Speed- and Position-Constrained Case. There are
several cases depending on the active sequence of the two
constraints. For example, if the speed constraint is firstly active
on the boundary interval (t ∈ [t1.1, t1.2]) and then the position
constraint is active on the boundary interval (t ∈ [t2.1, t2.2]),
the corresponding optimal control is formed as,

u∗(t) =


k1t+ k2 [0, t1.1)
uc.v [t1.1, t1.2)

k1(t− t1.2) + uc.v [t1.2, t2.1)
uc.s [t2.1, t2.2)

k3(t− t2.2) + uc.s [t2.2, tp]

, (42)

and a system of seven nonlinear equations (u∗(t1.1) = uc.v ,
v∗(t1.1) = vmax, u∗(t2.1) = uc.s, v∗(t2.1) = vp(t2.1),
s∗(t2.1) = sp(t2.1), v∗(tp) = V , and s∗(tp) = S) in
seven unknowns (λ1.0, λ2.0, t1.1, t1.2, t2.1, π0.h2 , and t2.2)
is obtained and solved.

Analogously, the speed- and position-constrained solution
of other cases can be computed.

IV. CONDITIONS FOR FEASIBLE ANALYTICAL SOLUTION

Terminal conditions at final time determine whether the
analytical state-constrained solution exists or not. A feasible
terminal speed condition is easily defined by the requirement
that a terminal speed must be lower than the maximum speed
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limit. On the other hand, a feasible terminal position is affected
by the preceding vehicle’s driving as well as the maximum
speed limit, thus such a condition is more critical to set.
Consider two consecutive vehicles driving on the same lane;
the host vehicle does not overtake the preceding vehicle or
change the direction of movement on the planned route. From
this point of view, the terminal position condition, a pair
(tp, S), may be infeasible under two types of scenarios: a
stop (Fig. 1(a)) and non-stop scenario (Fig. 1(b)). In the first
scenario, the preceding vehicle will stop before arriving at S,
whereas in the second scenario, it will drive too slow to arrive
at S within tp. Therefore, it is necessary to define a feasible
range of the terminal position and to guarantee the existence
of the state-constrained solution.

Fig. 1. Two scenarios for non-existence of analytical solution: stop scenario
(a) and non-stop scenario (b).

A. Maximum Terminal Position

An active state constraint imposes the maximum terminal
position that the host vehicle can reach at the end of the
prediction horizon. There are three definitions of the maximum
terminal position depending on which state constraint becomes
active: 1) the speed constraint, 2) the position constraint, and
3) both of them.

In the first case, an active speed constraint generates its
boundary interval and then penalizes the terminal position
of the host vehicle. If this boundary interval expands and
equals the prediction horizon, the resulting travel distance sets
a condition for S,

S ≤ Smax.1(tp) = s0 + vmaxtp. (43)

In the second case of an active position constraint, the re-
sulting travel distance of the preceding vehicle sets a condition
for S,

S ≤ Smax.2(tp) = sp.0 + vp.0tp + ap.0t
2
p/2. (44)

In the last case, the two constraints are active in sequence.
If the speed constraint precedes the position constraint, (44)
is still valid. However, if the position constraint precedes the
speed constraint, the terminal position is more penalized than
that in (44). In the extreme situation when the exit (or contact)
time of the position constraint equals the entry time of the
speed constraint, and the exit time of the speed constraint
equals the prediction horizon, the resulting travel distance
indicates the maximum terminal position. In this case, if the
entry time of the speed constraint is smaller than the prediction
horizon (t1.1 ≤ tp), the additional condition for S is

S ≤ Smax.3(tp) = sp(t1.1) + vmax(tp − t1.1),

= sp.0 −
(vmax − vp.0)2

2ap.0
+ vmaxtp, (45)

where t1.1 := (vmax − vp.0)/ap.0, obtained from vp(t1.1) =
vmax.

In summary, the maximum terminal position is written as

Smax(tp) = min(Smax.1, Smax.2, Smax.3), (46)

where the most limiting conditions (min) depends on tp.
A first threshold can be computed imposing

Smax.1(tp.th.1) = Smax.2(tp.th.1) and solving the following
equation,

F1 + F2tp.th.1 + F3t
2
p.th.1 = 0, (47)

where F1 = s0 − sp.0, F2 = vmax − vp.0, F3 = −ap.0/2.
The second threshold is the entry time of the speed con-

straint,
tp.th.2 = t1.1. (48)

If there exist tp.th.1 and tp.th.2 satisfying

0 < tp.th.1 < tp.th.2, (49)

the maximum terminal position can be written as

Smax(tp) =


Smax.1 tp ∈ [0, tp.th.1)
Smax.2 tp ∈ [tp.th.1, tp.th.2)
Smax.3 tp ∈ [tp.th.2,∞]

 . (50)

B. Minimum Terminal Position

In case of a small travel distance, the unconstrained so-
lution might cause the host vehicle to drive backward in
the vicinity of the end of the prediction horizon. This is
mainly due to the fact that the optimal speed profile is a
quadratic function of time, and this function, with a zero
terminal speed, changes from being concave to convex as the
terminal position decreases. The limit feasible case is when
the speed profile becomes linear, i.e., k1 = 0 in (16), the
corresponding speed and position are vl(t) = v0 − v0t/tp
and sl(t) = s0 + v0t − v0t

2/(2tp). There are two definitions
of the minimum terminal position depending on whether the
position constraint becomes inactive or active. In the first case,
the minimum terminal position is defined as

Smin.1(tp) = sl(tp) = s0 + v0tp/2. (51)

In the second case, the contact time, tc, such that v∗(tc) =
vp(tc) and s∗(tc) = sp(tc) exists in order to enforce the
position constraint. This position-constrained solution having

Fig. 2. Trajectories of the host vehicle generating the minimum terminal
position for five different values of tp: speed (a) and position (b). Bold black
line is the trajectory of the preceding vehicle, and dashed black line is tp.th.3.
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linear speed profile after tc results in the minimum terminal
position, as follows:

Smin.2(tp) = sp(tc) + vp(tc)(tp − tc),

= sp.0 +
vp.0tc

2
+
vp.0 + ap.0tc

2
tp, (52)

and tc is computed imposing k3 = (b1c0 + c1(λ1.0 +
π1.p))/(2b2) = 0 in (34) and solving the following equation,

F5t
2
c + F6tc + F7 = 0 for 0 < tc < tp.s, (53)

where F5 = 2v0 − 3vp.0 − ap.0tp.s, F6 = 6(s0 − sp.0) +
2tp.s(vp.0 − v0), F7 = 6tp.s(sp.0 − s0).

The threshold that activates the position constraint, tp.th.3,
exists only if there exists the touch point such that sl(tun.c) =
sp(tun.c) = 0. Using the discriminant of the condition for
tun.c, tp.th.3 is written as

tp.th.3 =
2(sp.0 − s0)v0

(vp.0 − v0)2 − 2ap.0(sp.0 − s0)
. (54)

With tp.th.3, the minimum terminal position can be written
as

Smin(tp) =

{
Smin.1 tp ∈ [0, tp.th.3)
Smin.2 tp ∈ [tp.th.3,∞]

}
. (55)

Figure 2 shows that the speed trajectory becomes a linear
function over the whole horizon or the sub-horizon if the posi-
tion constraint is active. Moreover, the corresponding terminal
position points build up the minimum terminal position curve
(Smin(tp)).

C. Feasible Range

In this section, the conditions on terminal position are
illustrated using examples of normal and abnormal scenarios.
The feasible range is defined as the area in the plane (tp, S)
between the maximum and minimum terminal position curves
as shown in Fig. 3. Suppose that the point (tp, S) was set
to (tp.s, Ss) (“Set point”). In the normal scenario, the set
point is a feasible terminal condition, whereas in the abnormal
scenarios, it becomes an infeasible terminal condition and thus
must be corrected to be in the feasible range as (tp.a, Sa)
(“Adjusted point”). In the non-stop scenario, only the terminal
position must be adjusted, whereas in the stop scenario, the
prediction horizon must be also shrunk. In other terms, when
the preceding vehicle is braking suddenly and sharply (stop

scenario), the host vehicle must take an action to stop itself
optimally considering the stopping distance and time of the
preceding vehicle.

The adjusted terminal position must be as far as possible
to avoid large torque values afterwards that cause unnecessary
energy losses. This adaptation of the terminal position con-
dition guarantees the existence of the analytical solution, and
thus improves robustness of the MPC with respect to uncertain
driving of the preceding vehicle.

V. SIMULATION

A. Simulation Environment

The preceding vehicle is assumed to drive a real-world
speed profile, and its future driving behavior is only predicted
using the current state information. To evaluate the proposed
safe- and eco-driving control system, three speed profiles are
extracted from experimental data of actual trips in the city
of Aachen, Germany, [26] (urban driving scenario), while the
Artemis highway driving cycle is selected as a highway driving
scenario, see Fig. 4. The initial position of the preceding
vehicle (sp.0) is set to 50 m. Vehicle parameters are listed
in Table I. Simulation is performed on a standard desktop
computer with a 3.50 GHz Intel quad core chip and 16.0 GB
RAM using MATLAB 2015b.

TABLE I
VEHICLE SPECIFICATIONS

Category Value Unit

Total mass, m 1432 kg
Wheel radius, r 0.2820 m

Vehicle Frontal area, Af 1.1536 m2

Aerodynamic drag coefficient, cd 0.44 -
Ambient air density, ρa 1.18 kgm−3

Rolling resistance coefficient, cr 0.0132 -
Transmission Transmission ratio, Rt 9.59 -

Transmission efficiency, ηt 0.98 -
Electric motor b1 = Rt/r 34.007 m−1

Loss coefficient, b2 0.8730

B. Controller Setup

A desired arrival time and position are set to T0 and S0,
respectively. At every time step, the MPC updates current time
and position (t0 and s0). If the prediction horizon is initially

Fig. 3. Feasible range of the terminal position with (tp.s, Ss) = (80, 500) for three scenarios: normal (a), abnormal non-stop (b), and abnormal stop (c).



2379-8858 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2018.2804162, IEEE
Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. ??, NO. ??, ?? 2017 7

Fig. 4. Four driving scenarios for the preceding vehicle

set to Tp < T0, the Tp is not changed unless a remaining travel
time (T0 − t0) becomes smaller than it. However, if Tp > T0,
the desired arrival time is not T0, but Tp. Therefore, the set
value of the prediction horizon, tp.s is

tp.s(t0) =

{
min(Tp, T0 − t0) Tp < T0

Tp − t0 Tp ≥ T0

}
, (56)

The shorter the used tp.s is, the more prone to be an
infeasible terminal position S0 is. Although the terminal
position is adjusted in the feasible range, large control input
values are inevitably generated to cover this distance. For
this reason, it is necessary to change the desired terminal
position depending on tp.s. Therefore, the desired mean speed,
vmean(t0) = (S0−s0)/(T0− t0), is used to define a set value
of terminal position as

Ss(t0) = min(S0, s0 + vmeantp.s),

= min(S0, s0 + (S0 − s0)/(T0 − t0)tp.s). (57)

Depending on whether the terminal conditions (tp.s, Ss) are
feasible or not, the adjusted terminal conditions are

(tp, S) =

{
(tp.s, Ss) if feasible

(tp.s, Sa) or (tp.a, Sa) else

}
. (58)

The proposed MPC computes the closed-form optimal con-
trol input to cover the distance S in a tp time and applies
the first computed control input to drive the electric CAV. The
MPC updating period, at which the MPC computes a new
optimal control input, is set to 0.1 s. The maximum speed
limit is set to the maximum speed of the preceding vehicle
(i.e. vmax = [51, 58, 90, 150] km/h) and the minimum safe
distance (δs) is set to 5 m.

C. Performance Evaluation

In this section, the proposed MPC is evaluated in terms
of real-time computation capability and energy consumption
optimality. As a measure of computation time, the mean time
to generate the analytical solution at every time step is used.
The energy consumption over the whole trip, Ef , is calculated
with the full model in (1)-(4). The reference optimal energy
consumption, Ef.opt, is computed using an interior penalty
method [27] and a collocation method (bvp5c in MATLAB
[28]) to solve the state-constrained optimal control problem
with a perfect knowledge about future driving of the preceding
vehicle. The loss of energy optimality is defined as

LoO = (Ef − Ef.opt)/Ef.opt × 100. (59)

The LoO of the preceding vehicle is also computed in the
same way for comparison.

1) Effect of Prediction Horizon (Tp): Figure 5(a) shows
the variation of the final energy consumption with Tp for
the second scenario of Fig. 4. Generally, as Tp increases
to T0, the energy consumption decreases, however the curve
Ef (Tp) has a minimum point on the left of T0, where
optimized Tp generating the minimum is denoted by T ∗p . In
the right region, Tp is also the desired arrival time (see 56),
thus as Tp increases, the resulting final energy consumption
monotonically decreases. As for the real-time computation
capability, the computing time generally increases with Tp,
but it is generally small enough to implement on an on-board
controller (less than 20 ms in general and 4 ms when T ∗p is
used), as shown in Fig. 5(b).

Fig. 5. Effect of the initial prediction horizon on energy consumption (a) and
computational time (b), for the second driving scenario.

Figure 6 shows the trajectories for three different values
of Tp: short (Tp.min = 10 s), optimized (T ∗p = 100 s),
long (Tp.max = T0 = 304 s). The shorter prediction horizon
generates almost the same speed as the preceding vehicle,
while avoiding a rear-end collision (Fig. 6(a)). For this reason,
sharp and large control inputs are generated and thus the
resulting energy consumption is only slightly reduced with
respect to the preceding vehicle. On the other hand, in the other
cases, the preceding vehicle driving behavior can be predicted
over a sufficiently long horizon, and thus the increase/decrease
in the speed is closer to optimum. As shown in Fig. 6(c), the
optimal control input is smoother in these cases than in the
case of a shorter prediction horizon. This is the main reason of
the significant improvement in terms of energy consumption
(Fig. 5(a) and Fig. 6(d)).

On the other hand, the longer prediction horizon tends to
increase the speed slowly in the beginning of the trip due
to aerodynamic drag resistance which is not considered in
the analytical solution. Then, it must reach and cruise the
maximum speed in order to arrive at destination on time, which
results in some loss of energy optimality. This is the same
reason for the convex curve of Ef (Tp) in Fig. 5(a).
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Fig. 6. Trajectories for three different values of initial prediction horizon for the second driving scenario: speed (a), position (b), optimal control input (c),
and energy consumption (d).

These results lead to the observation that a short prediction
horizon can maintain small inter-vehicle distance by mim-
icking the speed of the preceding vehicle; it means that the
proposed system can also serve as energy-efficient ACC by
keeping a small prediction horizon.

2) Effect of Minimum Safe Distance (δs): The difference
(sp.0 − δs) in the position constraint (6) fixes the position
boundary. Thus, this section analyzes the effect of another
control parameter, δs, on the energy consumption as well as
the inter-vehicle gap. Besides δs = 5 m, three different values,
δs = [10, 30, 50] m, are used. As shown in Fig. 7, as δs
increases up to sp.0 the position constraint becomes more ag-
gressive and consequently the energy consumption increases.
Note, however, that the increase in energy consumption caused
by the increase in δs is very small. As for safe driving, inter-
vehicle gap increases with δs.

Fig. 7. Effect of the the minimum safe distance on energy consumption and
inter-vehicle gap trajectory for the second driving scenario

3) Summary: As for the robustness, Fig. 8 shows the
terminal time and position over time for the second driving
scenario of Fig. 4. According to the predicted driving behavior
of the preceding vehicle, if set terminal condition (tp.s, Ss) is
feasible, it is held; otherwise it is adjusted. It is shown that

terminal position (non-stop scenario) or both of terminal time
and position (stop-scenario) are adjusted.

Fig. 8. Results of terminal position condition adjustment with optimized
initial prediction horizon (Tp = T ∗

p = 100 s) under the second scenario.
t0 and s0 are initial time and position, respectively; t0 + tp and S are final
terminal time and position, respectievely; t0 + tp.s and Ss are set terminal
time and position, respectievely.

As shown in Table II, use of the optimized prediction
horizon results in small loss of energy optimality (less than
8 %) and outperforms the preceding vehicle by more than 8
% (44 % at most) for all driving scenarios.

TABLE II
SUMMARY OF RESULTS FOR FOUR DRIVING SCENARIOS

Preceding vehicle MPC Reference

Final energy #1 91.3 65.0 61.9
consumption #2 94.0 69.0 65.8
[wh/km] #3 91.1 86.6 82.6

#4 151.2 140.4 129.6

Loss of #1 51.6 7.63 0
energy optimality #2 45.1 6.32 0

[%] #3 18.7 5.77 0
#4 16.7 8.33 0
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VI. CONCLUSION

This paper presents a novel safe- and eco-driving control
system based on analytical solution of energy-minimal torque
input for electric CAVs. Vehicle safety is considered as a state
constraint, and analytical state-constrained solutions that mini-
mize energy consumption are derived under some assumptions.
Furthermore, the feasible range of the terminal conditions is
analyzed to ensure the existence of the analytical solution for
all possible preceding vehicle scenarios.

The effectiveness of the proposed system is validated for
several scenarios in which the preceding vehicle travels with
a real-world speed profile. The simulation results show that
the proposed system allows the electric CAV to acceler-
ate/decelerate optimally, and thus increases energy efficiency
without increasing the trip time, while avoiding rear-end colli-
sions as well as maintaining a speed lower than the maximum
speed limit. In addition, it is shown that the proposed system is
suitable for real-time use, thanks to its low computational time.
Future work is expected to include investigation of CAV’s
influence on mixed traffic with different penetration rates, as
well as extension to a multi-lane driving scenario.

APPENDIX A
COEFFICIENTS FOR STATE-CONSTRAINED SOLUTION

A. Coefficients for Speed Only Constrained Case

A1.1 = v0(3v2
max − 3v0vmax + v2

0),

A1.2 = −6(Sv2
0 + Sv2

max − tpv3
max

+2tpv0v
2
max − tpv2

0vmax − 2Sv0vmax),

A1.3 = −9(t2pv
3
max − S2v0 + S2vmax

−2Stpv
2
max − t2pv0v

2
max + 2Stpv0vmax),

B1.1 = v0 − vmax,
B1.2 = 3(s0 − S) + tpV + 2tpvmax,

B1.3 = V − vmax,
C1.1 = −(b1c0)/c1,

C1.2 = 4b2(v0 − vmax)/c21,

D1.1 = −(2b2c0 + b1c1v0)/c21,

D1.2 = 4b2(v0 − vmax)/c21.

B. Coefficients for Position Only Constrained Case

1) Boundary Interval:

A2.b.1 = −3(s0 − sp.0),

A2.b.2 = v0 − vp.0,
B2.b.1 = −(3sp.0 − 3S + tpV + 2tpvp.0 + (ap.0t

2
p)/2),

B2.b.2 = vp.0 − V + ap.0tp,

C2.b.1 = −(b1c0)/c1,

C2.b.2 = 4b2(v0 − vp.0)/c21,

D2.b.1 = −(2ap.0b2 + 2b2c0 + b1c1v0)/c21,

D2.b.2 = 4b2(v0 − vp.0)/c21,

E2.b.1 = 4b2(vp.0 − V + ap.0tp)/c
2
1,

E2.b.2 = 4b2(v0 − vp.0)/c21,

E2.b.3 = −8b2tp(v0 − vp.0)/c21,

E2.b.4 = 4b2t
2
p(v0 − vp.0)/c21.

2) Contact Point:

A2.c.1 = v0 − V + ap.0tp,

A2.c.2 = 3s0 − 3S − 2tpv0 + tpV + 4tpvp.0 + (ap.0t
2
p)/2,

A2.c.3 = −6tp(s0 − sp.0) + t2p(v0 − vp.0),

A2.c.4 = 3t2p(s0 − sp.0),

C2.c.1 = −(b1c0)/c1,

C2.c.2 = 12b2(v0 − vp.0)/c21,

C2.c.3 = 24b2(s0 − sp.0)/c21,

D2.c.1 = −(2ap.0b2 + 2b2c0 + b1c1v0)/c21,

D2.c.2 = 8b2(v0 − vp.0)/c21,

D2.c.3 = 12b2(s0 − sp.0)/c21,

E2.c.1 = 4b2(v0 − V + ap.0tp)/c
2
1,

E2.c.2 = 16b2tp(v0 − vp.0)/c21,

E2.c.3 = 12b2tp(2(s0 − sp.0)− tp(v0 − vp.0))/c21,

E2.c.4 = 24b2t
2
p(s0 − sp.0)/c21.
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