N. Ozdor, M. Dulger, and S. E. , Cyclic variability in spark ignition engines: a literature survey. SAE Paper 940987, 1994.

F. A. Ayala and J. B. Heywood, Lean SI Engines: The role of combustion variability in defining lean limits, 2007.

J. Szybist and D. Splitter, Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines, SAE Int J Engines, vol.9, pp.819-850, 2016.

G. S. Jatana and B. C. Kaul, Determination of SI Combustion Sensitivity to Fuel Perturbations as a Cyclic Control Input for Highly Dilute Operation, SAE Int J Engines, vol.10, 2017.

C. Kolodziej, M. Pamminger, J. Sevik, T. Wallner, S. Wagnon et al., Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion, SAE Int J Fuels Lubr, vol.10, pp.82-94, 2017.

V. Sick, High Speed Imaging in Fundamental and Applied Combustion Research, Proceedings of the Combustion Institute, vol.34, pp.3509-3539, 2013.

R. Scarcelli, K. Richards, E. Pomraning, P. K. Senecal, T. Wallner et al., Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations, 2016.

K. Truffin, C. Angelberger, R. S. Pera, and C. , Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a sparkignition engine, Combustion and Flame, vol.162, pp.4371-90, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01258774

C. Pera, R. S. Angelberger, and C. , Exploitation of Multi-Cycle Engine LES to Introduce Physical Perturbations in 1-D Engine Models for Reproducing CCV, 2001.

C. J. Rutland, Large-eddy simulations for internal combustion engines-a review, International Journal of Engine Research, vol.12, pp.421-51, 2011.

D. C. Haworth, Large-eddy simulation of in-cylinder flows. Oil & Gas Science and Technology, vol.54, pp.175-85, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02075797

D. Goryntsev, A. Sadiki, M. Klein, and J. Janicka, Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air-fuel mixing in realistic DISI IC-engines, Proc Comb Inst, vol.32, 2009.

T. Kuo, Y. X. , G. V. Chen, and Z. , Large Eddy Simulation (LES) for IC Engine Flows, Oil & Gas Science and Technology, vol.69, pp.61-81, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01933367

M. Schmitt, R. Hu, Y. M. Wright, P. Soltic, and K. Boulouchos, Multiple cycle LES simulations of a direct injection natural gas engine. Flow Turbulence and Combustion, vol.95, pp.645-68, 2015.

S. Fontanesi, S. Paltrinieri, A. Tiberi, A. Adamo, and . Multi, Analysis of a High Oerformance GDI Engine

C. Pera, K. V. Reveillon, and J. , Influence of flow and ignition fluctuations on cycle-to-cycle variations in early flame kernel growth, Proceedings of the Combustion Institute, vol.35, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139080

M. Schmitt, C. E. Frouzakis, A. G. Tomboulides, Y. M. Wright, and K. Boulouchos, Direct numerical simulation of multiple cycles in a valve/piston assembly, Physics of Fluids, vol.26, p.35105, 2014.

V. Sick, D. Reuss, and C. Rutland, A Common Engine Platform for Engine LES Development and Validation, 2010.

M. Baumann, F. Di-mare, and J. Janicka, On the Validation of Large Eddy Simulation Applied to Internal Combustion Engine Flows Part II: Numerical Analysis. Flow, Turbulence and Combustion, vol.92, pp.299-317, 2013.

E. Baum, B. Peterson, B. Böhm, and A. Dreizler, On The Validation of LES Applied to Internal Combustion Engine Flows: Part 1: Comprehensive Experimental Database. Flow, Turbulence and Combustion, vol.92, pp.269-97, 2013.

P. Schiffmann, S. Gupta, D. Reuss, V. Sick, Y. X. Kuo et al., TCCIII-Engine Benchmark for Large Eddy Simulation of IC Engine Flows, Oil & Gas Science and Technology, vol.71, pp.1-27, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01707465

P. Schiffmann, R. Dl, V. Sick, and . Repository, , 2017.

P. Schiffmann, D. L. Reuss, and V. Sick, TCCIII Motored Full View. University of Michigan, 2017.

P. Schiffmann, D. L. Reuss, and V. Sick, , 2017.

,

P. Schiffmann, D. L. Reuss, and V. Sick, TCCIII Fired Spark Plug Region. University of Michigan, 2017.

F. A. Matekunas, Modes and Measures of Cyclic Combustion Variability. SAE 830337, 1983.

Y. Shekhawat, D. C. Haworth, and A. Adamo, An Experimental and Simulation Study of Early Flame Development in a Homogeneous-Charge Spark-Ignition Engine, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01695342

T. Tian, V. W. Wong, and J. B. Heywood, A Piston Ring-Pack Film Thickness and Friction Model for Multigrade Oils and Rough Surfaces. SAE Paper 962032, 1996.

J. B. Heywood, Internal combustion engine fundamentals, 1988.

G. P. Beretta, M. Rashidi, and J. C. Keck, Turbulent Flame Propagation and Combustion in Spark Ignition Engines, Combustion and Flame, vol.52, pp.217-262, 1983.

V. S. Arpac?, Y. Ko, M. T. Lim, and H. S. Lee, Spark kernel development in constant volume combustion, Combustion and Flame, vol.135, pp.315-337, 2003.

J. Abraham, F. V. Bracco, and R. D. Reitz, Comparisons of computed and measured premixed charge engine combustion, Combustion and Flame, vol.60, pp.309-331, 1985.

P. Schiffmann, V. Sick, and F. Foucher, Multi-diagnostics Analysis of Flow Induced Combustion Variability at SI Engine-Like Conditions, 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics. Lisbon, Portugal2016, pp.776-91

A. Palm-leis and R. A. Strehlow, On the propagation of turbulent flames, Combustion and Flame, vol.13, pp.111-140, 1969.

D. L. Reuss, Cyclic Variability of Large-Scale Turbulent Structures in Directed and Undirected IC Engine Flows

P. S. Abraham, X. Yang, S. Gupta, T. W. Kuo, D. L. Reuss et al., Flow-pattern switching in a motored spark ignition engine, International Journal of Engine Research, vol.16, pp.323-362, 2015.
DOI : 10.1177/1468087414565400

URL : http://arxiv.org/pdf/1412.4287

H. Zhao and N. Ladommatos, Engine Combustion Instrumentation and Diagnostics, Society of Automotive Engineers, 2001.
DOI : 10.4271/r-264

P. Schiffmann, Root Causes of Cyclic Variability of Early Flame Kernels in Spark Ignited Engines, 2016.

J. Westerweel, Fundamentals of digital particle image velocimetry, Meas Sci Technol, vol.8, pp.1379-92, 1997.

M. Megerle, V. Sick, and D. L. Reuss, Measurement of Digital PIV Precision using Electrooptically-Created Particle-Image Displacements, Measurement Science and Technology, vol.13, pp.997-1005, 2002.

S. Ananiev, On analogy between transition to turbulence in fluids and plasticity in solids, Turbulence, Heat and Mass Transfer 5, 2006.

M. S. Chong, A. E. Perry, and B. J. Cantwell, A general classification of three-dimensional flow fields, Physics of Fluids, vol.2, pp.765-77, 1990.

S. Sarathy, C. Yeung, C. Westbrook, W. Pitz, M. Mehl et al., An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame, Combustion and Flame, vol.158, pp.1277-87, 2011.

S. M. Sarathy, C. K. Westbrook, and M. Mehl, Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C 7 to C 20, Combustion and flame, vol.158, pp.2338-57, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02020213

J. K. Bechtold and M. Matalon, The dependence of the Markstein length on stoichiometry, Combustion and Flame, vol.127, pp.1906-1919, 2001.

J. F. Driscoll, Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities, Progress in Energy and Combustion Science, vol.34, pp.91-134, 2008.

C. K. Law, Combustion physics, 2006.

J. O. Hinze, M. Turbulence, and . Hill, , 1975.

S. Pischinger and J. B. Heywood, How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel Development in an SI-Engine. SAE 900021, 1990.

D. C. Montgomery, Design and analysis of experiments, 2008.