B. Ahmad, A. Alsaedi, F. Brezzi, L. Marini, and A. Russo, Equivalent projectors for virtual element methods, Computers and Mathematics with Applications, vol.66, issue.3, pp.376-391, 2013.

O. Andersen, H. M. Nilsen, and X. Raynaud, Virtual element method for geomechanical simulations of reservoir models, Computational Geosciences, vol.21, issue.5, pp.877-893, 2017.

L. Beirão-da-veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini et al., Basic principles of virtual element methods, Mathematical Models & Methods in applied sciences, vol.23, issue.1, pp.199-214, 2013.

L. Beirão-da-veiga, F. Brezzi, and L. Marini, Virtual elements for linear elasticity problems, SIAM Journal on Numerical Analysis, vol.51, issue.2, pp.794-812, 2013.

L. Beirão-da-veiga, F. Brezzi, L. Marini, and A. Russo, The hitchhiker's guide to the virtual element method, Mathematical Models & Methods in applied sciences, vol.24, issue.8, pp.1541-1573, 2014.

L. Beirão-da-veiga, C. Lovadina, and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes, Computer Methods in Applied Mechanics and Engineering, vol.295, pp.327-346, 2015.

L. Beiro-da-veiga, F. Brezzi, L. Marini, and A. Russo, Serendipity nodal VEM spaces, Computers & Fluids, vol.141, pp.2-12, 2016.

N. Bellomo, F. Brezzi, and G. Manzini, Recent techniques for pde discretizations on polyhedral meshes, Mathematical Models and Methods in Applied Sciences, vol.24, issue.08, pp.1453-1455, 2014.

S. Berrone and A. Borio, Orthogonal polynomials in badly shaped polygonal elements for the virtual element method. Finite Elements in Analysis and Design, vol.129, pp.14-31, 2017.

M. A. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics, vol.12, issue.2, pp.155-164, 1941.
URL : https://hal.archives-ouvertes.fr/hal-01368635

J. Bishop, A displacement-based finite element formulation for general polyhedra using harmonic shape functions, International Journal for Numerical Methods in Engineering, vol.97, issue.1, pp.1-31, 2014.

S. C. Brenner, G. Qingguang, and L. Sung, Some estimates for virtual element methods, Computational Methods in Applied Mathematics, vol.17, issue.4, pp.553-574, 2017.

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, vol.15, 2008.

A. Cangiani, E. H. Georgoulis, T. Pryer, and O. J. Sutton, A posteriori error estimates for the virtual element method, Numerische Mathematik, vol.137, issue.4, pp.857-893, 2017.

B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.1319-1365, 2009.

D. Pietro, D. A. Ern, A. Lemaire, and S. , A Review of Hybrid HighOrder Methods: Formulations, Computational Aspects, Comparison with Other Methods, pp.205-236, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01163569

J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Mathematical Models & Methods in Applied Sciences, vol.24, issue.8, pp.1575-1619, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00813613

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Techniques of Scientific Computing, vol.7, pp.713-1018, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02100732

A. L. Gain, C. Talischi, and G. H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Computer Methods in Applied Mechanics and Engineering, vol.282, pp.132-160, 2014.

N. Guy, G. Enchéry, and G. Renard, Numerical modeling of thermal eor: Comprehensive coupling of an amr-based model of thermal fluid flow and geomechanics, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles, vol.67, issue.6, pp.1019-1027, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00815739

S. Lemaire, Nonconforming discretizations of a poromechanical model on general meshes, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00957292

G. H. Paulino and A. L. Gain, Bridging art and engineering using Escher-based virtual elements. Structural and Multidisciplinary Optimization, vol.51, pp.867-883, 2015.

R. Quey, P. Dawson, and F. Barbe, Large-scale 3d random polycrystals for the finite element method: Generation, meshing and remeshing, Computer Methods in Applied Mechanics and Engineering, vol.200, pp.1729-1745, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00858028

B. Rivì-ere, M. F. Wheeler, and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM Journal on Numerical Analysis, vol.39, issue.3, pp.902-931, 2002.

A. Settari and F. Mourits, Coupling of geomechanics and reservoir simulation models, Proceedings, 8th International Conference on Computer Methods and Advances in Geomechanics, vol.3, pp.2151-2158, 1994.

R. Showalter, Diffusion in poro-elastic media, Journal of Mathematical Analysis and Applications, vol.251, issue.1, pp.310-340, 2000.

N. Sukumar and E. Malsch, Recent advances in the construction of polygonal finite element interpolants. Archives of Computational, Methods in Engineering, vol.13, issue.1, p.129, 2006.

L. Beiro-da-veiga, K. Lipnikov, and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems, Modeling, Simulation & Applications, vol.11, 2014.

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Mathematics of Computation, vol.83, issue.289, pp.2101-2126, 2014.

M. D. Zoback, Reservoir Geomechanics, 2007.