E. Thomas, Biomass in the energy picture, Science, vol.285, pp.1209-1209, 1999.

B. Kamm, Production of platform chemicals and synthesis gas from biomass, Ang. Chem. Int. Ed, vol.46, pp.5056-5058, 2007.

T. P. Vispute and G. W. Huber, Breaking the chemical and engineering barriers to lignocellulosic biofuels, Int. Sugar J, vol.110, pp.138-319, 2008.

T. Bludowsky and D. W. Agar, Thermally integrated biosyngas-production for biorefineries, Chem. Eng. Res. Des, vol.87, pp.1328-1339, 2009.
DOI : 10.1016/j.cherd.2009.03.012

J. N. Chheda, G. W. Huber, and J. A. Dumesic, Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals, Ang. Chem. Int. Ed, vol.46, pp.7164-7183, 2007.

L. Vilcocq, Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial Considerations 857

Y. Q. Pu, D. C. Zhang, P. M. Singh, and A. J. Ragauskas, The new forestry biofuels sector, Biofuel. Bioprod. Bior, vol.2, pp.58-73, 2008.

Y. C. Lin and G. W. Huber, The critical role of heterogeneous catalysis in lignocellulosic biomass conversion, Energ. Environ. Sci, vol.2, pp.68-80, 2009.

L. Petrus and M. A. Noordermeer, Biomass to biofuels, a chemical perspective, Green Chem, vol.8, pp.861-867, 2006.

W. P. Deng, X. S. Tan, W. H. Fang, Q. H. Zhang, and Y. Wang, Conversion of Cellulose into Sorbitol over Carbon NanotubeSupported Ruthenium Catalyst, Catal. Lett, vol.133, pp.1-2, 2009.
DOI : 10.1007/s10562-009-0136-3

L. N. Ding, A. Q. Wang, M. Y. Zheng, and T. Zhang, Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst, vol.7, pp.818-821, 2010.

A. Fukuoka and P. L. Dhepe, Catalytic Conversion of Cellulose into Sugar Alcohols, Ang. Chem. Int. Ed, vol.45, pp.5161-5163, 2006.
DOI : 10.1002/ange.200601921

B. Blanc, A. Bourrel, P. Gallezot, T. Haas, and P. Taylor, Starch-derived polyols for polymer technologies: preparation by hydrogenolysis on metal catalysts, Green Chem, vol.2, pp.89-91, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00006988

T. Werty and G. R. Petersen, Topvalue added chemicals from biomass (top 12), 2004.

J. J. Bozell and G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited, Green Chem, vol.12, pp.539-554, 2010.

G. W. Huber, S. Iborra, and A. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem. Rev, vol.106, pp.4044-4098, 2009.

W. H. Zartman and H. Adkins, Hydrogenolysis of Sugars, J. Am. Chem. Soc, vol.55, pp.4559-4563, 1933.

I. Clark, Hydrogenolysis of Sorbitol, Ind. Eng. Chem, vol.50, pp.1125-1126, 1958.

C. Montassier, D. Giraud, J. Barbier, and J. P. Boitiaux, Polyol transformation by liquid-phase heterogeneous catalysis over metals, Bull. Soc. Chim. Fr, vol.2, pp.148-155, 1989.
DOI : 10.1016/s0167-2991(09)60811-9

G. D. , Etude de l'hydrogénolyse catalytique de polyols en phase liquide, Thèse, Doctorat de Catalyse Organique, 1986.

C. Montassier, J. C. Menezo, J. Moukolo, J. Naja, L. C. Hoang et al., Polyol conversions into furanic derivatives on bimetallic catalysts-Cu-Ru, vol.70, pp.65-84, 1991.

G. W. Huber and J. A. Dumesic, An overview of aqueousphase catalytic processes for production of hydrogen and alkanes in a biorefinery, Catal. Today, vol.111, pp.1-2, 2006.

R. D. Cortright, R. R. Davda, and J. A. Dumesic, Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water, Nature, vol.418, pp.964-967, 2002.

G. W. Huber, R. D. Cortright, and J. A. Dumesic, Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates, Ang. Chem. Int. Ed, vol.43, pp.1549-1551, 2004.

G. W. Huber, J. N. Chheda, C. J. Barrett, and J. A. Dumesic, Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science, vol.308, pp.1446-1450, 2005.

C. Montassier, J. C. Menezo, L. C. Hoang, C. Renaud, and J. Barbier, Aqueous polyol conversions on ruthenium and on sulfurmodified ruthenium, J. Mol. Catal, vol.70, pp.99-110, 1991.
DOI : 10.1016/0304-5102(91)85008-p

E. P. Maris and R. J. Davis, Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts, J. Catal, vol.249, pp.328-337, 2007.

Y. Nakagawa and K. Tomishige, Heterogeneous catalysis of the glycerol hydrogenolysis, Catal. Sci. Technol, vol.1, pp.179-190, 2011.

F. Auneau, C. Michel, F. Delbecq, C. Pinel, and P. Sautet, Unravelling the Mechanism of Glycerol Hydrogenolysis over Rhodium Catalyst through Combined ExperimentalTheoretical Investigations, Chem. Eur. J, vol.17, pp.14288-14299, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00697783

J. Tendam and U. Hanefeld, Renewable Chemicals: Dehydroxylation of Glycerol and Polyols, vol.8, pp.1017-1034, 2011.

N. Li and G. W. Huber, Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO 2-Al 2 O 3 : Identification of reaction intermediates, J. Catal, vol.207, pp.48-59, 2010.

T. Ekou, A. L. Flura, L. Ekou, C. Especel, and S. Royer, Selective hydrogenation of citral to unsaturated alcohols over mesoporous Pt/Ti-Al 2 O 3 catalysts. Effect of the reduction temperature and of the Ge addition, J. Mol. Catal. A: Chemical, vol.0, pp.148-155, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00683378

L. Z. Qin, M. J. Song, and C. L. Chen, Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO 3 /ZrO 2 catalysts in a fixed-bed reactor, Green Chem, vol.12, pp.1466-1472, 2010.

Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa et al., Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir-ReO x /SiO 2 catalyst, Appl. Catal. B: Environ, vol.105, pp.1-2, 2011.

E. D'hondt, S. V. De-vyver, B. F. Sels, and P. A. Jacobs, Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen, Chem. Commun, vol.45, pp.6011-6012, 2008.

T. Miyazawa, S. Koso, K. Kunimori, and K. Tomishige, Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin, Appl. Catal. A: Gen, vol.318, pp.244-251, 2007.

B. Peng, C. Zhao, I. Mejia-centeno, G. A. Fuentes, A. Jentys et al., Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3 alcohols on Pt/Al 2 O 3, Catal. Today, vol.183, pp.3-9, 2012.

F. Otey and C. Mehltretter, Notes-A simple preparation of 1,4-anhydroerythritol, J. Organic Chem, vol.26, pp.1673-1673, 1961.

C. Montassier, J. C. Menezo, J. Naja, P. Granger, J. Barbier et al., Polyol conversion into furanic derivatives on bimetallic catalysts, nature of the catalytic sites, J. Mol. Catal, vol.91, pp.119-128, 1994.

C. Montassier, J. M. Dumas, P. Granger, and J. Barbier, Deactivation of supported copper-based catalysts during polyol conversion in aqueous-phase, Appl. Catal. A: Gen, vol.121, pp.231-244, 1995.

G. B. Ligthart, R. H. Meijer, M. P. Donners, J. Meuldijk, J. A. Vekemans et al., Highly sustainable catalytic dehydrogenation of alcohols with evolution of hydrogen gas, Tetrahedron Lett, vol.44, pp.1507-1509, 2003.

R. Alcala, M. Mavrikakis, and J. A. Dumesic, DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111), J. Catal, vol.218, pp.178-190, 2003.

K. Murata, I. Takahara, and M. Inaba, Propane formation by aqueous-phase reforming of glycerol over Pt/H-ZSM5 catalysts, Reaction Kinetics Catal. Lett, vol.93, pp.59-66, 2008.

B. Liu, J. Greeley, O. ;-c-h, and C. , Decomposition Pathways of Glycerol via, Bond Scission on Pt, vol.115, issue.111, pp.19702-19709, 2011.

A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A. A. Lemonidou et al., Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol, J. Catal, vol.269, pp.411-420, 2010.

A. V. Kirilin, A. V. Tokarev, E. V. Murzina, L. M. Kustov, J. P. Mikkola et al., Reaction products and transformations of intermediates in the aqueous-phase reforming of sorbitol, ChemSuschem, vol.3, pp.708-718, 2010.

P. P. Pescarmona, K. P. Janssen, C. Delaet, C. Stroobants, K. Houthoofd et al., Zeolite-catalysed conversion of C3 sugars to alkyl lactates, Green Chem, vol.12, pp.1083-1089, 2010.

K. Wang, M. C. Hawley, and T. D. Furney, Mechanism Study of Sugar and Sugar Alcohol Hydrogenolysis Using 1,3-Diol Model Compounds, Ind. Eng. Chem. Res, vol.34, pp.3766-3770, 1995.

J. W. Shabaker, G. W. Huber, R. R. Davda, R. D. Cortright, and J. A. Dumesic, Aqueous-phase reforming of ethylene glycol over supported platinum catalysts, Catal. Lett, vol.88, pp.1-2, 2003.

T. P. Vispute and G. W. Huber, Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils, Green Chem, vol.11, pp.1433-1445, 2009.

N. Li, G. A. Tompsett, and G. W. Huber, Renewable highoctane gasoline by aqueous-phase hydrodeoxygenation of C5 and C6 carbohydrates over Pt/zirconium phosphate catalysts, ChemSuschem, vol.3, pp.1154-1157, 2010.

L. Vilcocq, A. Cabiac, C. Especel, S. Lacombe, and D. Duprez, Study of the stability of Pt/SiO 2-Al 2 O 3 catalysts in aqueous medium: Application for sorbitol transformation, Catal. Commun, vol.15, pp.18-22, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01342616

Q. Zhang, K. Qiu, B. Li, T. Jiang, X. Zhang et al., Isoparaffin production by aqueous phase processing of sorbitol over the Ni/HZSM-5 catalysts: Effect of the calcination temperature of the catalyst, Fuel, vol.90, pp.3468-3472, 2011.

M. B-a-n-u, Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY, Catal. Commun, vol.12, pp.673-677, 2011.

L. Gong, Y. Lu, Y. Ding, R. Lin, J. Li et al., Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO 3 /TiO 2 /SiO 2 catalyst in aqueous media, Appl. Catal. A: Gen, vol.390, pp.119-126, 2010.

R. M. Ravenelle, F. Schuber, A. D'amico, N. Danilina, J. A. Van-bokhoven et al., Stability of zeolites in hot liquid water, J. Phys. Chem. C, vol.114, pp.19582-19595, 2010.

R. M. West, D. J. Braden, and J. A. Dumesic, Dehydration of butanol to butene over solid acid catalysts in high water environments, J. Catal, vol.262, pp.134-143, 2009.

R. M. West, M. H. Tucker, D. J. Braden, and J. A. Dumesic, Production of alkanes from biomass derived carbohydrates on bi-functional catalysts employing niobium-based supports, Catal. Commun, vol.10, pp.1743-1746, 2009.

T. Okuhara, Water-Tolerant Solid Acid Catalysts, Chem. Rev, vol.102, pp.3641-3666, 2002.
DOI : 10.1002/chin.200303268

H. N. Pham, Y. J. Pagan-torres, J. C. Serrano-ruiz, D. Wang, J. A. Dumesic et al., Improved hydrothermal stability of niobia-supported Pd catalysts, Appl. Catal. A: Gen, vol.397, pp.153-162, 2011.

R. Weingarten, G. A. Tompsett, J. Conner, and G. W. Huber, Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Bronsted acid sites, J. Catal, vol.279, pp.174-182, 2011.

P. Sun, D. Yu, Y. Hu, Z. Tang, J. Xia et al., H 3 PW 12 O 40 /SiO 2 for sorbitol dehydration to isosorbide: High efficient and reusable solid acid catalyst, Korean J. Chem. Eng, vol.28, pp.99-105, 2011.
DOI : 10.1007/s11814-010-0324-2

L. Zhao, J. H. Zhou, Z. J. Sui, and X. G. Zhou, Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst, Chem. Eng. Sci, vol.65, pp.30-35, 2010.

J. H. Zhou, M. G. Zhang, L. Zhao, P. Li, X. G. Zhou et al., Carbon nanofiber/graphite-felt composite supported Ru catalysts for hydrogenolysis of sorbitol, Catal. Today, vol.147, pp.225-229, 2009.

T. Miyazawa, Y. Kusunoki, K. Kunimori, and K. Tomishige, Glycerol conversion in the aqueous solution under hydrogen over Ru/C plus an ion-exchange resin and its reaction mechanism, J. Catal, vol.240, pp.213-221, 2006.

D. K. Sohounloue, C. Montassier, and J. Barbier, Catalytic hydrogenolysis of sorbitol, React. Kinet. Catal. Lett, vol.22, pp.391-397, 1983.

R. M. Ravenelle, J. R. Copeland, W. G. Kim, J. C. Crittenden, and C. Sievers, Structural changes of ?-Al 2 O 3-supported catalysts in hot liquid water, ACS Catal. 1, vol.5, pp.552-561, 2011.

G. Wen, Y. Xu, H. Ma, Z. Xu, and Z. Tian, Production of hydrogen by aqueous-phase reforming of glycerol, Int. J. Hydrogen Energy, vol.33, pp.6657-6666, 2008.

R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, and J. A. Dumesic, Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts, Appl. Catal. B-Environ, vol.43, pp.13-26, 2003.

G. A. Somorjai, Introduction to Surface Chemistry and Catalysis, 1994.

R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, and J. A. Dumesic, A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueousphase reforming of oxygenated hydrocarbons over supported metal catalysts, Appl. Catal. B-Environ, vol.56, pp.171-186, 2005.

R. M. Ravenelle, F. Z. Diallo, J. C. Crittenden, and C. Sievers, Effects of metal precursors on the stability and observed reactivity of Pt/?-Al 2 O 3 catalysts in aqueous phase reactions, Chem. Cat. Chem, vol.4, pp.492-494, 2012.

L. C. Hoang, J. C. Menezo, C. Montassier, and J. Barbier, Stability in aqueous phase of ruthenium catalysts, Bull. Soc. Chim. Fr, vol.4, pp.491-495, 1991.

A. Douidah, P. Marecot, S. Labruquere, and J. Barbier, Stability of supported platinum catalysts in aqueous phase under hydrogen atmosphere, Appl. Catal. A: Gen, vol.210, pp.1-2, 2001.

W. C. Ketchie, E. P. Maris, and R. J. Davis, In-situ X-ray absorption spectroscopy of supported Ru catalysts in the aqueous phase, Chem. Mater, vol.19, pp.3406-3411, 2007.

G. Wen, Y. Xu, Z. Xu, and Z. Tian, Characterization and catalytic properties of the Ni/Al 2 O 3 catalysts for aqueous-phase reforming of glucose, Catal. Lett, vol.129, pp.250-257, 2009.

A. Iriondo, V. L. Barrio, J. F. Cambra, P. L. Arias, M. B. Guemez et al., Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Topics Catal, vol.49, pp.46-58, 2008.

G. W. Huber, J. W. Shabaker, S. T. Evans, and J. A. Dumesic, Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts, Appl. Catal. B: Environ, vol.62, pp.226-235, 2006.

E. L. Kunkes, R. R. Soares, D. A. Simonetti, and J. A. Dumesic, An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift, Appl. Catal. B: Environ, vol.90, pp.693-698, 2009.

E. L. Kunkes, D. A. Simonetti, J. A. Dumesic, W. D. Pyrz, L. E. Murillo et al., The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum-rhenium catalysts, J. Catal, vol.260, pp.164-177, 2008.

T. Bligaard, J. K. Nørskov, S. Dahl, J. Matthiesen, C. H. Christensen et al., The Brønsted-Evans-Polani relation and the volcano curve in heterogeneous catalysis, J. Catal, vol.224, pp.206-217, 2004.

D. C. Grenoble, M. M. Estadt, and D. F. Ollis, The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts, J. Catal, vol.67, pp.90-102, 1981.

L. Vilcocq, Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial Considerations 859

M. Chia, Y. J. Pagan-torres, D. Hibbitts, Q. Tan, H. N. Pham et al., Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts, J. Am. Chem. Soc, vol.133, pp.12675-12689, 2011.

J. W. Shabaker, D. A. Simonetti, R. D. Cortright, and J. A. Dumesic, Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies, J. Catal, vol.231, pp.67-76, 2005.

J. W. Shabaker and J. A. Dumesic, Kinetics of aqueous-phase reforming of oxygenated hydrocarbons: Pt/Al 2 O 3 and Sn-modified Ni catalysts, Ind. Eng. Chem. Res, vol.43, pp.3105-3112, 2004.

J. W. Shabaker, G. W. Huber, and J. A. Dumesic, Aqueousphase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts, J. Catal, vol.222, pp.180-191, 2004.

G. W. Huber, J. W. Shabaker, and J. A. Dumesic, Raney Ni-Sn catalyst for H 2 production from biomass-derived hydrocarbons, Science, vol.300, pp.2075-2077, 2003.

A. Tanksale, C. H. Zhou, J. N. Beltramini, and G. Q. Lu, Hydrogen production by aqueous phase reforming of sorbitol using bimetallic Ni-Pt catalysts: metal support interaction, J. Incl. Phenom. Macrocyclic Chem, vol.65, pp.83-88, 2009.

D. A. Simonetti and J. A. Dumesic, Catalytic production of liquid fuels from biomass-derived hydrocarbons: catalytic coupling at multiple length scales, Catal. Rev, vol.51, pp.441-484, 2009.

D. Coll, F. Delbecq, Y. Aray, and P. Sautet, Stability of intermediates in the glycerol hydrogenolysis on transition metal catalysts from first principles, Phys. Chem. Chem. Phys, vol.13, pp.1448-1456, 2011.

S. Zinoviev, F. Müller-langer, P. Das, N. Bertero, P. Fornasiero et al., Next-Generation Biofuels: Survey of Emerging Technologies and Sustainability Issues, ChemSusChem, vol.3, pp.1106-1133, 2010.

N. Savage, Fuel options: The ideal biofuel, Nature, vol.474, pp.9-11, 2011.

G. Centi, P. Lanzafame, and S. Perathoner, Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials, Catal. Today, vol.167, pp.14-30, 2011.

P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Ind. Eng. Chem. Res, vol.48, pp.3713-3729, 2009.

A. Corma, S. Iborra, and A. Velty, Chemical routes for the transformation of biomass into Chemicals, Chem. Rev, vol.107, pp.2411-2502, 2007.

R. S. Laxman and A. H. Lachke, Bioethanol from lignocellulosic biomass, in Handbook of plant based biofuels, 2009.

Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol, vol.83, pp.1-11, 2002.

M. Taherzadeh and K. Karimi, Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review, Int. J. Mol. Sci, vol.9, pp.1621-1651, 2008.

M. Delmas, Vegetal Refining and Agrochemistry, Chem. Eng. Technol, vol.31, pp.792-797, 2008.

L. R. Lynd, C. E. Wyman, and T. U. Gerngross, Biocommodity engineering, Biotechnol. Progress, vol.15, pp.777-793, 1999.

T. Eggeman and R. T. Elander, Process and economic analysis of pretreatment technologies, Bioresour. Technol, vol.96, pp.2019-2025, 2005.

S. K. Sharma, K. L. Kalra, and H. S. Grewal, Enzymatic saccharification of pretreated sunflower stalks, Biomass Bioenergy, vol.23, pp.237-243, 2002.

D. J. Hayes, An examination of biorefining processes, catalysts and challenges, Catal. Today, vol.145, pp.138-151, 2009.

, Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. Arkenol. US5562777A, 1994.

C. Perego and D. Bianchi, Biomass upgrading through acidbase catalysis, Chem. Eng. J, vol.161, pp.314-322, 2010.

B. Kusserow, S. Schimpf, and P. Claus, Hydrogenation of Glucose to Sorbitol over Nickel and Ruthenium Catalysts, Adv. Synth. Catal, vol.345, pp.289-299, 2003.

, Multi-stage aldoses to polyols process. Hydrocarbon research in. US4380678A, 1981.

, Catalytic hydrogenation of glucose to produce sorbitol. Hydrocarbon research in. US4322569A, 1982.

P. Gallezot, N. Nicolaus, G. Fleche, P. Fuertes, and A. Perrard, Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor, J. Catal, vol.180, pp.51-55, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00006760

A. M. Ruppert, K. Weinberg, and R. Palkovits, Hydrogenolysis Goes Bio: From Carbohydrates and Sugar Alcohols to Platform Chemicals, Ang. Chem. Int. Ed, vol.51, pp.2564-2601, 2012.

S. M. Swami, V. Chaudhari, D. S. Kim, S. J. Sim, and M. A. Abraham, Production of Hydrogen from Glucose as a Biomass Simulant: Integrated Biological and Thermochemical Approach, Ind. Eng. Chem. Res, vol.47, pp.3645-3651, 2007.

P. G. Blommel, G. R. Keenan, R. T. Rozmiarek, and R. D. Cortright, Catalytic conversion of sugar into conventional gasoline, Diesel, jet fuel, and other hydrocarbons, Int. Sugar J, vol.110, pp.672-679, 2008.

E. L. Kunkes, D. A. Simonetti, R. M. West, J. C. Serrano-ruiz, C. A. Gartner et al., Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes, Science, vol.322, pp.417-421, 2008.

C. Marcilly, Catalyse acido-basique : application au raffinage et à la pétrochimie, pp.338-415, 2003.

A. De-klerk, D. O. Leckel, and N. M. Prinsloo, Butene Oligomerization by Phosphoric Acid Catalysis: Separating the Effects of Temperature and Catalyst Hydration on Product Selectivity, Ind. Eng. Chem. Res, vol.45, pp.6127-6136, 2006.

, Single-reactor process for producing liquid-phase organic compounds from biomass. US2009255171A, 2009.

M. Rose and R. Palkovits, Cellulose-Based Sustainable Polymers: State of the Art and Future Trends, Macromol. Rapid Commun, vol.32, pp.1299-1311, 2011.

R. Menegassi, J. Li, C. Nederlof, P. O'connor, M. Makkee et al., Cellulose Conversion to Isosorbide in Molten Salt hydrate Media, ChemSusChem, vol.3, pp.325-328, 2010.

, Process for converting polysaccharides in an inorganic molten salt hydrate

J. R. Regalbuto, Cellulosic Biofuels-Got Gasoline?, Science, vol.325, pp.822-824, 2009.

R. R. Davda and J. A. Dumesic, Renewable hydrogen by aqueous-phase reforming of glucose, Chem. Commun, vol.1, pp.36-37, 2004.

J. Liu, X. Chu, L. Zhu, J. Hu, R. Dai et al., Simultaneous Aqueous-Phase Reforming and KOH Carbonation to Produce COx-Free Hydrogen in a Single Reactor, ChemSuschem, vol.3, pp.803-806, 2010.

O. O. James, S. Maity, M. A. Mesubi, K. O. Ogunniran, T. O. Siyanbola et al., Towards reforming technologies for production of hydrogen exclusively from renewable resources, Green Chem, vol.13, pp.2272-2284, 2011.

D. Komula, Completing the Puzzle: 100% Plant-Derived PET, 2011.

G. Keenan, The World Congress on Industrial Biotechnology and Bioprocessing, pp.27-30, 2010.

N. Y. Chen, T. F. Degnan, and L. R. Koenig, Liquid fuels from carbohydrates, Chemtech, vol.16, pp.506-511, 1986.

T. R. Carlson, G. A. Tompsett, W. C. Conner, and G. W. Huber, Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks, Topics Catal, vol.52, pp.241-252, 2009.

G. Wen, Y. Xu, Z. Xu, and Z. Tian, Direct conversion of cellulose into hydrogen by aqueous-phase reforming process, Catal. Commun, vol.11, pp.522-526, 2010.

, Conversion of carbohydrates to hydrocarbons, Conocophillips. WO2011/078909, 2011.

C. Zhao and J. A. Lercher, Upgrading Pyrolysis Oil over Ni/HZSM-5 by cascade Reactions, Ang. Chem. Int. Ed, vol.51, pp.1-7, 2012.