, intermediates and products quantities was carried out using a Shimadzu high-performance liquid chromatography (HPLC) (Shimadzu Europa, Duisburg, Germany) instrument equipped with a LC-20ADXR pump, a DGU-20A5R degasser, a SIL-20ACXR autosampler, a SPD-MD20A diode array detector, a CTO-20AC oven and a CBM-20A communicator module piloted by a LabSolution software, The column was an Aminex HPX-87H, vol.9

. Bio-rad, C. A. Hercules, and U. ). , The mobile phase was 5 mM H 2 SO 4 , using isocratic mode with 0.4 mL.min-1. The chosen wavelength for HMF and levulinic acid detection were 284 nm and 266 nm, respectively. The chosen wavelength for detection of formic acid, D-Glucose and D-Fructose was 195 nm

, Aqueous Phase D-Glucose Isomerization (Aqueous Feed Phase) and D-Fructose Complexation/Transportation

D. , Isomerization in Aqueous Feed Phase We used one of the commercial enzymes most commonly used for the conversion of starches to high fructose syrup, namely immobilized glucose isomerase (IGI, Sweetzyme ® IT extra), vol.31

, Na 2 SO 3 (8 mM) and MgSO 4 (20 mM) in a buffer solution (100 mM) at a selected pH (Tris-HCl buffer for pH 7, 7.5, 8, 8.5, 9, phosphate buffer for pH 6.5, or citrate buffer for pH 4.5) and then introduced in an Eppendorf tube. The solution was incubated at the desired temperature (323 to 363 K) in a Mixing Block (BIOER-102 Thermocell) at 900 rpm, D-glucose solution (1 mL) was prepared by mixing D-glucose (100 mM)

, Author Contributions: Conceptualization, Alexandra Gimbernat and Marie Guehl; Methodology, Nicolas Lopes Ferreira and Egon Heuson; Validation, Rénato Froidevaux, Jean-Sébastien Girardon and Damien Delcroix

, Formal Analysis, Mickael Capron and Pascal Dhulster; Investigation, Alexandra Gimbernat and Marie Guehl

, Data Curation, Franck Dumeignil; Writing-Original Draft Preparation, Alexandra Gimbernat and Marie Guehl

R. Supervision, J. Froidevaux, D. Girardon, and . Delcroix, Funding: This research received no external funding

S. Nanda, J. Mohammad, S. N. Reddy, J. A. Kozinski, and A. K. Dalai, Pathways of lignocellulosic biomass conversion to renewable fuels, Biomass Convers. Biorefin, vol.4, pp.157-191, 2014.

M. Besson, P. Gallezot, and C. Pinel, Conversion of Biomass into Chemicals over Metal Catalysts, Chem. Rev, vol.114, pp.1827-1870, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01057461

M. Aresta, A. Dibenedetto, F. Dumeignil, and . Biorefinery, From Biomass to Chemicals and Fuels, 2012.

V. B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D. B. Levin, Biomass pretreatment: Fundamentals toward application, Biotechnol. Adv, vol.29, pp.675-682, 2011.

J. J. Bozell and G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates-The USA Department of Energy's "Top 10" revisited. Green Chem, vol.12, pp.539-545, 2010.

C. D. Van-heerden and W. Nicol, Continuous succinic acid fermentation by Actinobacillus succinogenes, Biochem. Eng. J, vol.73, pp.5-11, 2013.

E. Girard, D. Delcroix, and A. Cabiac, Catalytic conversion of cellulose to C 2-C 3 glycols by dual association of a homogeneous metallic salt and a perovskite-supported platinum catalyst, Catal. Sci, vol.6, pp.5534-5542, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01397785

B. H. Shanks, Unleashing Biocatalysis/Chemical Catalysis Synergies for Efficient Biomass Conversion, ACS Chem. Biol, vol.2, pp.533-535, 2007.

P. N. Vennestrøm, E. Taarning, C. H. Christensen, S. Pedersen, J. D. Grunwaldt et al., Chemoenzymatic Combination of Glucose Oxidase with Titanium Silicalite-1, ChemCatChem, vol.2, pp.943-945, 2010.

C. A. Denard, J. F. Hartwig, and H. Zhao, Multistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis, ACS Catal, vol.3, pp.2856-2864, 2013.

F. Dumeignil, Public Serv. Rev. Eur. Union, vol.22, p.528, 2011.

F. Dumeignil, Chemical Catalysis and Biotechnology: From a Sequential Engagement to a One-Pot Wedding, Chem. Ing. Tech, vol.86, pp.1496-1508, 2014.

R. Van-putten, J. C. Van-der-waal, E. De-jong, C. B. Rasrendra, H. G. Heeres et al., A Versatile Platform Chemical Made from Renewable Resources, Chem. Rev, vol.113, pp.1499-1597, 2013.

M. Moliner, Y. Román-leshkov, and M. E. Davis, Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water, Proc. Natl. Acad. Sci, vol.107, pp.6164-6168, 2010.

J. J. Pacheco and M. E. Davis, Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural, Proc. Natl. Acad. Sci, vol.111, pp.8363-8367, 2014.

Z. Lin, V. Nikolakis, and M. Ierapetritou, Alternative Approaches for p-Xylene Production from Starch: Techno-Economic Analysis, Ind. Eng. Chem. Res, vol.53, pp.10688-10699, 2014.

D. Jong, E. Dam, M. A. Sipos, L. Gruter, and G. , Furandicarboxylic Acid (FDCA), a Versatile Building Block for a Very Interesting Class of Polyesters, Am. Chem. Soc, vol.1, pp.1-13, 2012.

A. Boisen, T. B. Christensen, W. Fu, Y. Y. Gorbanev, T. S. Hansen et al., Process Integration for the Conversion of Glucose to 2,5-Furandicarboxylic Acid, Chem. Eng. Res. Des, vol.87, pp.1318-1327, 2009.

G. R. Akien, L. Qi, and I. T. Horvath, Molecular mapping of the acid catalysed dehydration of fructose, Chem. Commun, vol.48, pp.5850-5852, 2012.

K. Parker, M. Salas, and V. C. Nwosu, High fructose corn syrup: Production, uses and public health concerns Biotechnol, Mol. Biol. Rev, vol.5, pp.71-78, 2010.

H. Li, S. Yang, S. Saravanamurugan, and A. Riisager, Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances, ACS Catal, vol.7, pp.3010-3029, 2017.

I. Delidovich and R. Palkovits, Catalytic Isomerization of Biomass-Derived Aldoses: A Review, ChemSusChem, vol.9, pp.547-561, 2016.

V. Choudhary, A. B. Pinar, R. F. Lobo, D. G. Vlachos, and S. I. Sandler, Comparison of Homogeneous and Heterogeneous Catalysts for Glucose-to-Fructose Isomerization in Aqueous Media, ChemSusChem, vol.6, pp.2369-2376, 2013.

A. A. Marianou, C. M. Michailof, A. Pineda, E. F. Iliopoulou, K. S. Triantafyllidis et al., Glucose to Fructose Isomerization in Aqueous Media over Homogeneous and Heterogeneous Catalysts, ChemCatChem, vol.8, pp.1100-1110, 2016.

S. Zhao, X. Guo, P. Bai, and L. Lv, Catalytic Isomerization of Biomass-Derived Aldoses: A Review, Asian J. Chem, vol.26, pp.4537-4542, 2014.

M. Demerdash and R. M. Attia, Equilibrium kinetics of D-glucose to D-fructose isomerization catalyzed by glucose isomerase enzyme from Streptomyces phaeochromogenus, Zentralbl. Mikrobiol, vol.147, pp.297-303, 1992.

M. H. Gaily, B. M. Elhassan, A. E. Abasaeed, and M. Al-shrhan, Isomerization and Kinetics of Glucose into Fructose, Int. J. Eng. Technol, vol.10, pp.1-6, 2010.

Y. Takasaki, Kinetic and Equilibrium Studies on D-Glucose-D-Fructose Isomerization Catalyzed by Glucose Isomerase from Streptomyces sp, Agric. Biol. Chem, vol.31, pp.309-313, 1967.

H. Huang, C. A. Denard, R. Alamillo, A. J. Crisci, Y. Miao et al., Tandem Catalytic Conversion of Glucose to 5-hydroxymethylfurfural with an Immobilized Enzyme and a Solid Acid, ACS Catal, vol.4, pp.2165-2172, 2014.

R. Huang, W. Qi, R. Su, and Z. He, Integrating Enzymatic and Acid Catalysis to Convert Glucose into 5-Hydroxymethylfurfural, Chem. Commun. (Camb.), vol.46, pp.1115-1125, 2010.

I. Delidovich and R. Palkovits, Fructose production via extraction-assisted isomerization of glucose catalyzed by phosphates, Green Chem, vol.18, pp.5822-5830, 2016.

S. Alipour, P. A. Relue, S. Viamajala, and S. Varanasi, High yield 5-(hydroxylmethyl)furfural Production from Biomass Sugars under Facile Reaction Conditions: A Hybrid Enzyme-and Chemo-Catalytic Technology, Green Chem, vol.18, pp.4990-5002, 2016.

A. Gimbernat, M. Guehl, M. Capron, N. Lopes-ferreira, R. Froidevaux et al., Hybrid Catalysis: A Suitable Concept for the Valorization of Biosourced Saccharides to Value-Added Chemicals, vol.9, pp.2080-2888, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582182

S. H. Bhosale, M. B. Rao, and V. V. Deshpande, Molecular and Industrial Aspects of Glucose Isomerase, Microbiol. Rev, vol.60, pp.280-290, 1996.

G. Mckay and T. Tavlarides, Enzymatic isomerization kinetics of D-Glucose to D-Fructose, J. Mol. Catal, vol.6, pp.57-65, 1979.

G. T. Morin, M. F. Paugam, M. P. Hughes, and B. D. Smith, Boronic Acids Mediate Glycoside Transport through a Liquid Organic Membrane via Reversible Formation of Trigonal Boronate Esters, J. Org. Chem, vol.59, pp.2724-2730, 1994.

M. J. Karpa, P. J. Duggan, G. J. Griffin, and S. J. Freudigmann, Competitive Transport of Reducing Sugars Through a Lipophilic Membrane Facilitated by Aryl Boron Acids, Tetrahedron, vol.53, pp.3669-3676, 1997.

P. R. Westmark, S. J. Gardiner, and B. D. Smith, Selective Monosaccharide Transport through Lipid Bilayers using Boronic Acid Carriers, J. Am. Chem. Soc, vol.118, pp.11093-11100, 1996.