G. Akiki, T. L. Jackson, and S. Balachandar, Pairwise interaction extended point-particle model for a random array of monodisperse spheres, Journal of Fluid Mechanics, vol.813, pp.882-928, 2017.

T. B. Anderson and R. Jackson, Fluid mechanical description of fluidized beds. Equations of motion, Industrial & Engineering Chemistry Fundamentals, vol.6, issue.4, pp.527-539, 1967.

I. V. Andrews, T. Arthur, P. N. Loezos, and S. Sundaresan, Coarse-grid simulation of gas-particle flows in vertical risers, Industrial & engineering chemistry research, vol.44, issue.16, pp.6022-6037, 2005.

R. Beetstra, M. A. Van-der-hoef, and J. A. Kuipers, Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres

, AIChE Journal, vol.53, issue.2, pp.489-501, 2007.

S. Benyahia, M. Syamlal, and T. J. O'brien, Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe, Powder Technology, vol.156, issue.2, pp.62-72, 2005.

M. Bernard, E. Climent, and A. Wachs, Controlling the quality of two-way
URL : https://hal.archives-ouvertes.fr/hal-01585480

. Euler, Lagrange numerical modeling of bubbling and spouted fluidized beds dynamics, Industrial & Engineering Chemistry Research, vol.56, issue.1, pp.368-386, 2016.

A. S. Berrouk, D. Laurence, J. J. Riley, and D. E. Stock, Stochastic modelling of inertial particle dispersion by subgrid motion for LES of high Reynolds number pipe flow, Journal of Turbulence, vol.8, p.50, 2007.

S. Bogner, S. Mohanty, and U. Rüde, Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method, International Journal of Multiphase Flow, vol.68, pp.71-79, 2015.

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting and control, 2015.

J. Capecelatro and O. Desjardins, An Euler-Lagrange strategy for simulating particle-laden flows, Journal of Computational Physics, vol.238, pp.1-31, 2013.

J. Capecelatro, O. Desjardins, and R. O. Fox, On fluid-particle dynamics in fully developed cluster-induced turbulence, Journal of Fluid Mechanics, vol.780, pp.578-635, 2015.

C. T. Crowe, M. Sommerfeld, and Y. Tsuji, Multiphase flows with droplets and particles, 1997.

R. and D. Felice, The voidage function for fluid-particle interaction systems, International Journal of Multiphase Flow, vol.20, issue.1, pp.153-159, 1994.

T. D. Dreeben and S. B. Pope, Probability density function/Monte Carlo simulation of near-wall turbulent flows, Journal of Fluid Mechanics, vol.357, pp.141-166, 1998.

S. Ergun, Fluid flow through packed columns, Chemical engineering progress, vol.48, 1952.

A. Esteghamatian, M. Bernard, M. Lance, A. Hammouti, and A. Wachs, Micro/meso simulation of a fluidized bed in a homogeneous bubbling regime, International Journal of Multiphase Flow, vol.92, pp.93-111, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01565965

A. Esteghamatian, A. Hammouti, M. Lance, and A. Wachs, Particle resolved simulations of liquid/solid and gas/solid fluidized beds, Physics of Fluids, vol.29, issue.3, p.33302, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01565238

L. Fan and C. Zhu, Principles of gas-solid flows, 2005.

P. Fede, O. Simonin, P. Villedieu, and K. D. Squires, Stochastic modeling of the turbulent subgrid fluid velocity along inertial particle trajectories. Proceeding of the Summer Program, pp.247-258, 2006.

R. O. Fox, Large-eddy-simulation tools for multiphase flows, Annual Review of Fluid Mechanics, vol.44, pp.47-76, 2012.

R. Gatignol, The faxén formulas for a rigid particle in an unsteady nonuniform stokes-flow, Journal de Mécanique Théorique et Appliquée, vol.2, issue.2, pp.143-160, 1983.

D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions, 1994.

R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Periaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.

R. J. Hill, D. L. Koch, and A. J. Ladd, Moderate-reynolds-number flows in ordered and random arrays of spheres, Journal of Fluid Mechanics, vol.448, pp.243-278, 2001.

L. Huilin and D. Gidaspow, Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures, Chemical Engineering Science, vol.58, issue.16, pp.3777-3792, 2003.

J. T. Jenkins and M. Y. Louge, On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall, Physics of Fluids, vol.9, issue.10, pp.2835-2840, 1994.

S. H. Kriebitzsch, M. A. Van-der-hoef, and J. A. Kuipers, Fully resolved simulation of a gas-fluidized bed: a critical test of dem models, Chemical Engineering Science, vol.91, pp.1-4, 2013.

T. Li, J. Grace, and X. Bi, Study of wall boundary condition in numerical simulations of bubbling fluidized beds, Powder Technology, vol.203, issue.3, pp.447-457, 2010.

J. M. Link, L. A. Cuypers, N. G. Deen, and J. A. Kuipers, Flow regimes in a spout-fluid bed: A combined experimental and simulation study, Chemical Engineering Science, vol.60, issue.13, pp.3425-3442, 2005.

M. R. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Physics of Fluids, vol.26, issue.4, pp.883-889, 1958.

M. Muradoglu, P. Jenny, S. B. Pope, and D. A. Caughey, A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows, Journal of Computational Physics, vol.154, issue.2, pp.342-371, 1999.

B. Oesterle and A. Petitjean, Simulation of particle-to-particle interactions in gas solid flows, International journal of multiphase flow, vol.19, issue.1, pp.199-211, 1993.

P. Pepiot and O. Desjardins, Numerical analysis of the dynamics of two-and three-dimensional fluidized bed reactors using an Euler-Lagrange approach, Powder Technology, vol.220, pp.104-121, 2012.

S. B. Pope, Lagrangian PDF methods for turbulent flows. Annual review of fluid mechanics, vol.26, pp.23-63, 1994.

A. Rakotonirina and A. Wachs, Grains3D, a flexible DEM approach for particles of arbitrary convexshape-Part II: parallel implementation and scalable performance, revision in Powder Technology, 2017.

A. Rakotonirina, J. Delenne, F. Radjai, and A. Wachs, Grains3D, a flexible DEM approach for particles of arbitrary convexshape-Part III: extension to non convex particles, 2017.

G. J. Rubinstein, J. J. Derksen, and S. Sundaresan, Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force, Journal of Fluid Mechanics, vol.788, pp.576-601, 2016.

L. Schiller and Z. Naumann, A drag coefficient correlation. Vdi Zeitung, vol.77, p.51, 1935.

M. Sommerfeld and G. Zivkovic, Recent advances in the numerical simulation of pneumatic conveying through pipe systems, Computational methods in applied sciences, vol.201, 1992.

S. Subramaniam, Statistical representation of a spray as a point process, Physics of Fluids, vol.12, issue.10, pp.2413-2431, 1994.
DOI : 10.1063/1.1288266

S. Subramaniam, M. Mehrabadi, J. Horwitz, and A. Mani, Developing improved Lagrangian point particle models of gas-solid flow from particleresolved direct numerical simulation. Studying Turbulence Using Numerical Simulation Databases-XV, Proceedings of the CTR, pp.5-14, 2014.

Y. Tang, E. A. Peters, J. A. Kuipers, S. H. Kriebitzsch, and M. A. Hoef, A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres, AIChE journal, vol.61, issue.2, pp.688-698, 2015.

Y. Tang, Y. M. Lau, N. G. Deen, E. A. Peters, and J. A. Kuipers, Direct numerical simulations and experiments of a pseudo-2D gas-fluidized bed, Chemical Engineering Science, vol.143, pp.166-180, 2016.

S. Tenneti and S. Subramaniam, Particle-resolved direct numerical simulation for gas-solid flow model development, Annual review of fluid mechanics, vol.46, pp.199-230, 2014.
DOI : 10.1146/annurev-fluid-010313-141344

S. Tenneti, R. Garg, and S. Subramaniam, Drag law for monodisperse gassolid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres, International Journal of Multiphase flow, vol.37, issue.9, pp.1072-1092, 2011.

S. Tenneti, M. Mehrabadi, and S. Subramaniam, Stochastic Lagrangian model for hydrodynamic acceleration of inertial particles in gas-solid suspensions, Journal of Fluid Mechanics, vol.788, pp.695-729, 2016.

Y. Tsuji, T. Kawaguchi, and T. Tanaka, Discrete particle simulation of twodimensional fluidized bed, Powder technology, vol.77, issue.1, pp.79-87, 1993.

M. A. Van-der-hoef, M. Van-sint-annaland, N. G. Deen, and J. A. Kuipers, Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy, Annual Review of Fluid Mechanics, vol.70, pp.40-47, 2008.

A. Wachs, L. Girolami, G. Vinay, and G. Ferrer, Grains3D, a flexible DEM approach for particles of arbitrary convexshape-Part I: Numerical model and validations, Powder Technology, vol.224, pp.374-389, 2012.

A. Wachs, A. Hammouti, G. Vinay, and M. Rahmani, Accuracy of finite volume/staggered grid distributed lagrange multiplier/fictitious domain simulations of particulate flows, Computers & Fluids, vol.115, pp.154-172, 2015.
DOI : 10.1016/j.compfluid.2015.04.006

C. Wen and Y. H. Yu, 19 (a) Bed height expansion as a function of time and (b) fluid volume fraction axial profile, in the gas/solid regime. The definition of abbreviations is given in Tab, Chem. Eng. Prog. Symp. Ser, vol.62, p.41, 1966.

, Time evolution of the instantaneous and time-averaged square root of the particles fluctuations in (a)-(b) the axial direction z and (c)-(d) transverse direction x, in the gas/solid regime. The definition of abbreviations is given in Tab, vol.2

, Grid refinement analysis for DEM-CFD simulations. Evolution of (a) axial and (b) transverse granular temperature as a function of time in the liquid/solid regime

, Kernel support size refinement analysis for DEM-CFD simulations. Evolution of (a) axial and (b) transverse granular temperature as a function of time in the liquid/solid regime, p.51