Multiscale decomposition of Hex meshes from Geosciences. Study of lossless compression performance

Lauriane Bouard^{1,2}, Laurent Duval¹, Frédéric Payan², Marc Antonini²

¹IFP Energies nouvelles, France

²Université Côte d'Azur, CNRS, I3S, France

 $\begin{array}{c} \mbox{COmpression et REpresentation des Signaux Audiovisuels} \\ \mbox{November } 13^{th} \ 2018, \mbox{Poitiers} \end{array}$

Compression challenges

- Object made of various components
 - Hex mesh with geometrical discontinuities
 - Additional properties

- Standard meshes
- Geoscience meshes
- HexaShrink decomposition

2 Lossless compression performance

- Mesh benchmark
- Comparative performance
- Compression per mesh component

3 Conclusion & future works

1.1 Standard meshes

Surface meshes

Volume meshes

[Image from iso2mesh: mesh generator for Matlab]

Features

- Structure
 - Corner Point Grid format (CPG)
 - Fault network
- Cell activity
- Properties:

Features

- Structure
 - Corner Point Grid format (CPG)
 - Fault network
- Cell activity
- Properties:

CORESA 2018

Features

- Structure
 - Corner Point Grid format (CPG)
 - Fault network
- Cell activity
- Properties:

5 / 13

Features

• Structure

- Corner Point Grid format (CPG)
- Fault network
- Cell activity

• Properties: continuous (\mathbb{R}) (with high dynamic)

Features

• Structure

- Corner Point Grid format (CPG)
- Fault network
- Cell activity

• Properties: continuous $(\mathbb{R})/categorical$ (\mathbb{N})

5 / 13

Features

- Structure
 - Corner Point Grid format (CPG)
 - Fault network
- Cell activity

\bullet Properties: continuous ($\mathbb{R})/\text{categorical}$ ($\mathbb{N})$

5 / 13

Conclusion & future works

1.3 HexaShrink decomposition [PDS⁺16] [PDP⁺18] Analysis levels

i Analysis step of wavelet decomposition

Lossless compression performance

Conclusion & future works

1.3 HexaShrink decomposition [PDS⁺16] [PDP⁺18] Analysis levels

i Analysis step of wavelet decomposition

Conclusion & future works

1.3 HexaShrink decomposition [PDS⁺16] [PDP⁺18] Analysis levels

i Analysis step of wavelet decomposition

Conclusion & future works

1.3 HexaShrink decomposition [PDS⁺16] [PDP⁺18] Analysis levels

i Analysis step of wavelet decomposition

1.3 HexaShrink decomposition [PDS⁺16] [PDP⁺18]

Mesh components

- Geometry
 - Pillar
 - Zcorn
- Cell activity
- Properties
 - Categorical
 - Continuous

1.3 HexaShrink decomposition [PDS⁺16] [PDP⁺18]

Multiscale coherency• Geometry• Pillar• Zcorn• Global shape preservation• Cell activity• Borders preservation• Properties• Categorical• Continuous• "

1.3 HexaShrink decomposition [PDS⁺16] [PDP⁺18]

2.1 Compression challenge

What is the best way to encode the decomposed data?

Compression settings optimization

- Various types of meshes (dimensions, structure and properties)
- Various wavelet decomposition levels performed
- Various types of lossless coders used

Conclusion & future works

2.1 Benchmark description

Fault inclusions Cell number Global size

faults 93 600 4.62 MB faults 1 000 000 42.46 MB

#2

#4 S

210 000 7.88 MB

#5

faults 450 576 2.73 MB

faults 6 577 325 274.57 MB

#3

#7

faults 13 947 600 580.94 MB

Conclusion & future works

2.1 Benchmark description

Cell number Global size

faults 93 600 4 62 MB

#4

faults 210 000 7.88 MB

faults 450 576 2.73 MB

faults 6 577 325 274.57 ME

faults 3 947 600 80.94 MB

Lauriane Bouard

Conclusion & future works

2.1 Benchmark description

Fault inclusions

Cell number

Global size

faults 36 816 1.46 MB

8 / 13

Conclusion & future works

2.1 Benchmark description

Fault inclusions Cell number Global size

faults 93 600 4.62 MB

#4

faults 210 000 7.88 MB

faults 450 576 22.73 MB

faults 6 577 325 274.57 MB

#7

faults 13 947 600 580.94 MB

Lossless compression performance

Conclusion & future works

2.2 Comparative performance On mesh#6

Features		Compression rate				
Faults File Size		Level	gzip	bzip2	LZMA	
		none	2.31	2.25	3.04	
Yes	274.57 MB	1	3.31	3.53	4.44	
		2-6	4.14-4.24	4.48-4.68	5.54-5.73	

Results

Positive performances of lossless coders

- HexaShrink improves the compression rate
- Less significant improvements above two levels

Lossless compression performance

Conclusion & future works

2.2 Comparative performance On mesh#6

Features		Compression rate				
Faults	File Size	Level	gzip	bzip2	LZMA	
		none	2.31	2.25	3.04	
Yes	274.57 MB	1	3.31	3.53	4.44	
		2-6	4.14-4.24	4.48-4.68	5.54-5.73	

Results

• Positive performances of lossless coders

• HexaShrink improves the compression rate

• Less significant improvements above two levels

Lossless compression performance

Conclusion & future works

2.2 Comparative performance On mesh#6

Features		Compression rate				
Faults File Size		Level	gzip	bzip2	LZMA	
		none	2.31	2.25	3.04	
Yes	274.57 MB	1	3.31	3.53	4.44	
		2-6	4.14-4.24	4.48-4.68	5.54-5.73	

Results

Positive performances of lossless coders

- HexaShrink improves the compression rate
- Less significant improvements above two levels

Lossless compression performance

Conclusion & future works

2.2 Comparative performance On mesh#6

Features		Compression rate				
Faults File Size		Level	gzip	bzip2	LZMA	
		none	2.31	2.25	3.04	
Yes	274.57 MB	1	3.31	3.53	4.44	
		2–6	4.14-4.24	4.48-4.68	5.54–5.73	

Results

Positive performances of lossless coders

• HexaShrink improves the compression rate

• Less significant improvements above two levels

2.2 Comparative performance All meshes

Mach	Features		Compression rate				
IVIESI	Faults	File Size	Level	gzip	bzip2	LZMA	
			none	3.73	4.98	6.43	
1	No	4.62 MB	1	5.62	6.07	7.52	
			2–4	5.67	6.12-6.13	7.42-7.44	
			none	3.23	8.41	10.12	
2	No	42.46 MB	1	6.49	10.82	11.81	
			2–6	7.48–7.58	12.75-13.03	13.35	
			none	2.67	2.99	3.63	
3	Yes	1.46 MB	1	3.88	4.70	5.24	
			2–4	4.03-4.05	4.92-4.93	5.47-5.48	
			none	1.83	1.89	2.21	
4	Yes	7.88 MB	1	2.64	3.06	3.48	
			2–4	2.76	3.22-3.23	3.64-3.65	
			none	2.46	2.55	3.33	
5	Yes	22.73 MB	1	3.14	2.83	3.71	
			2-4	3.25-3.26	2.91-2.92	3.80-3.81	
			none	2.31	2.25	3.04	
6	Yes	274.57 MB	1	3.31	3.53	4.44	
			2–6	4.14-4.24	4.48-4.68	5.54-5.73	
			none	3.20	5.98	12.52	
7	Yes	580.94 MB	1	5.42	7.07	8.90	
			2–7	5.80-6.72	7.63-10.12	9.05-10.23	

2.2 Comparative performance All meshes

Moch	Features		Compression rate				
IVIESI	Faults	File Size	Level	gzip	bzip2	LZMA	
			none	3.73	4.98	6.43	
1	No	4.62 MB	1	5.62	6.07	7.52	
			2–4	5.67	6.12-6.13	7.42-7.44	
			none	3.23	8.41	10.12	
		42.46 MB	1	6.49	10.82	11.81	
			2–6	7.48-7.58	12.75-13.03	13.35	
			none	2.67	2.99	3.63	
3	Yes	1.46 MB	1	3.88	4.70	5.24	
			2–4	4.03-4.05	4.92-4.93	5.47-5.48	
	T		none	1.83	1.89	2.21	
		7.88 MB	1	2.64	3.06	3.48	
			2-4	2.76	3.22-3.23	3.64-3.65	
			none	2.46	2.55	3.33	
5	Yes	22.73 MB	1	3.14	2.83	3.71	
			2-4	3.25-3.26	2.91-2.92	3.80-3.81	
			none	2.31	2.25	3.04	
6	Yes	274.57 MB	1	3.31	3.53	4.44	
			2–6	4.14-4.24	4.48-4.68	5.54–5.73	
			none	3.20	5.98	12.52	
7	Yes	580.94 MB	1	5.42	7.07	8.90	
			2–7	5.80-6.72	7.63-10.12	9.05-10.23	

Lauriane Bouard

2.3 Compression per mesh component

2.3 Compression per mesh component

Conclusion

• HexaShrink: Efficient lossless compression for Geoscience meshes

- Coder choice important for best performance & usability
- Generic lossless coders are not fully adapted to:
 - Multiscale relationships
 - High dynamic data

- Use multiscale Tree encoders (EZW,SPITH)
- Special treatment of high dynamic data

Conclusion

• HexaShrink: Efficient lossless compression for Geoscience meshes

• Coder choice important for best performance & usability

- Generic lossless coders are not fully adapted to:
 - Multiscale relationships
 - High dynamic data

- Use multiscale Tree encoders (EZW,SPITH)
- Special treatment of high dynamic data

Conclusion

• HexaShrink: Efficient lossless compression for Geoscience meshes

- Coder choice important for best performance & usability
- Generic lossless coders are not fully adapted to:
 - Multiscale relationships
 - High dynamic data

- Use multiscale Tree encoders (EZW,SPITH)
- Special treatment of high dynamic data

Conclusion

• HexaShrink: Efficient lossless compression for Geoscience meshes

- Coder choice important for best performance & usability
- Generic lossless coders are not fully adapted to:
 - Multiscale relationships
 - High dynamic data

- Use multiscale Tree encoders (EZW,SPITH)
- Special treatment of high dynamic data

Conclusion

• HexaShrink: Efficient lossless compression for Geoscience meshes

- Coder choice important for best performance & usability
- Generic lossless coders are not fully adapted to:
 - Multiscale relationships
 - High dynamic data

- Use multiscale Tree encoders (EZW,SPITH)
- Special treatment of high dynamic data

Bibliography:

Jean-Luc. Peyrot, Laurent. Duval, Frédéric. Payan, Lauriane. Bouard, Lénaïc. Chizat, Sébastien. Schneider, and Marc. Antonini.

Hexashrink, an exact scalable framework for hexahedral meshes with attributes and discontinuities: Multiresolution rendering ans strorage of geoscience models.

PREPRINT (Computat. Geosci.), 2018.

Jean-Luc. Peyrot, Laurent. Duval, Sébastien. Schneider, Frédéric. Payan, and Marc. Antonini.

(H)exashrink: Multiresolution compression of large structured hexahedral meshes with discontinuities in geosciences.

In *Proc. Int. Conf. Image Process.*, pages 1101–1105, Phoenix, AZ, USA, Sep. 25-28, 2016.

Patent:

• Method of exploitation of hydrocarbons of an underground formation by means of optimized scaling, US 20170344676

Lauriane Bouard

Thank you for your attention!

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

