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Abstract. The Mixed Multiscale Finite Element method (MMsFE) is a promising alternative to traditional
upscaling techniques in order to accelerate the simulation of ”ows in large heterogeneous porous media. Indeed,
in this method, the calculation of the basis functions which encompass the “ne-scale variations of the perme-
ability “eld, can be performed in parallel and the size of the global linear system is reduced. However, we show
in this work that a two-level MPI strategy should be used to adapt the calculation resources at these two steps
of the algorithm and thus obtain a better scalability of the method. This strategy has been implemented for the
resolution of the pressure equation which arises in two-phase ”ow models. Results of simulations performed on
complex reservoir models show the bene“ts of this approach.

1 Introduction

Simulations of subsoil ”ows are based on geological models
which provide a description of the geometry of the porous
medium and its petrophysical properties such as porosity
and permeability. The space variations of these properties
play an important role on the ”ow. In industrial applica-
tions, like in the oil and gas industry for instance, the
geological description of the studied area often leads to
models where the permeability and porosity maps are
de“ned on grids made of dozens or hundreds of millions of
cells. This initial discretization will be referred to as “ne-
scale model in the following. Simulating multiphase ”ows,
directly at this grid resolution, may lead to large computing
times. This problem gets even worse when several simula-
tions have to be launched in order to perform a sensitivity
analysis, a calibration of the model parameters, or test
different ”ow scenarios. To overcome this issue, various
upscaling techniques and multiscale methods have been
developed over the past years.

Upscaling techniques essentially consist in averaging the
petrophysical properties de“ned in the “ne-scale model on a
coarser grid [1, 2]. But they usually do not enable to down-
scale solutions obtained with this grid onto the “ne one.
This requirement is particularly important when working
with work”ows including both the “ne and coarse models.
Local Grid Re“nements (LGRs) can be used jointly with

these techniques, as in [3], in order to obtain more accurate
solutions at particular places within a reservoir. However
LGRs cannot be used over large space areas. Therefore
the prospect of computing ef“ciently solutions at both “ne
and coarse scales motivated the development of multiscale
methods. In this class of methods, the petrophysical proper-
ties are used to compute basis functions which are associated
to degrees of freedoms related to the coarse mesh and calcu-
lated by solving local cell problems de“ned on the “ne mesh.
This set of basis functions is then used to build a discrete
linear system with a reduced number of unknowns on the
coarse mesh.

This approach has several advantages. Compared to
classical “nite elements, the shape of the basis functions
changes according to the local variations of the permeability
“eld within their support. All cell problems are independent
from each other and their resolution can be performed in
parallel. Moreover, once the linear system has been solved
at the coarse scale, according to the multiscale method,
either the ”uxes or the pressures can be downscaled on to
the “ne grid.

The “rst multiscale “nite element method has been
introduced in [4] for the study of porous materials. Unfortu-
nately, this method does not turn out to be appropriate for
”ow simulations since the ”uxes are not conservative on
the coarse and “ne meshes. A mixed formulation was
therefore proposed in [5] which enables, in case of two-phase
”ows, to couple the resolution of the pressure equation
with the resolution of the saturation equation. Note that* Corresponding author: guillaume.enchery@ifpen.fr
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other multiscale formulations like, for instance, multiscale
“nite-volume methods [6…8] have also been proposed and
provide mass conservative ”uxes too. The reader can refer
to [9, 10] for an overview of these techniques. The aim of this
work is here to provide strategies to improve the ef“ciency of
these methods when they are used in a parallel environment
and give quantitative speed-ups by using one of them,
namely the Mixed Multiscale Finite Element Method
(MMsFE) [ 5].

In this work, we consider a two-phase ”ow model where
the pressure equation is decoupled from the saturation
equation using IMPES or IMPIMS time discretizations.
The pressure equation is solved by means of the MMsFE
method whereas an upwind “nite volume scheme is used
to discretize the saturation equation at the “ne-scale. This
splitting is feasible since the MMsFE method provides
conservative ”uxes at the “ne and coarse scales. The cell
problems de“ned to compute the basis functions are dis-
cretized using a “nite volume method with a Two Point
Flux Approximation (TPFA) [ 11].

As mentioned before, the divide and conquer strategy
which is inherent to multiscale methods makes them attrac-
tive for parallel simulations since all cell problems de“ned to
compute the basis functions can be solved independently
from each other. Shared memory architectures are usually
used to ef“ciently deal with tasks in parallel. A parallel
implementation of the MMsFE method for one single node
has been proposed in [12] using the Matlab MRST toolbox
[13]. For multi and manycores architectures, a parallel
implementation has also been successfully developed in
[14]. However, for large scale simulations, distributed mem-
ory computing is required. A recent work presents a hybrid
parallel implementation within the DUNE framework [15].
Here, the hybrid parallel programming model consists in
using a shared memory programming within SMP nodes
and MPI-communications between nodes. In this approach,
no communication is needed within one node. However, this
requires to develop effective threadsafe components every-
where in the simulator.

In practice, the ef“ciency of the MMsFE method for the
two phase ”ow problem may be reduced for two reasons.
Even if all cell problems, which are de“ned to compute
the basis functions, are solved on a small space subdomain
including a few coarse cells, these problems can be numer-
ous. Therefore the MMsFE method leads to substantial
speedups only if a small part of the basis functions is recom-
puted at each time step. A criterion based on the variations
of the total mobility is usually used to trigger an update of
the basis in the neighborhood of the saturation front. The
performance of the multiscale method is thus optimal when
this front is not too large and the calculation workload
related to the resolution of all cell problems is dynamically
balanced through the processors. The second issue comes
from the small size of the coarse linear system. Since multi-
scale methods offer the possibility to agglomerate a signi“-
cant number of “ne cells into a coarse one, the resulting
distributed linear system can be small compared to the
number of MPI processes required by other parts of the
simulation sequence. Therefore, whereas a promising scal-
ing may be expected for other parts of the algorithm, this

strong reduction of the size of the linear system can lead
to scalability problems. This issue was already pointed
out in [15].

The purpose of this work is to address this second issue.
We investigated pure MPI and hybrid approaches to “nally
propose a two-level MPI alternative. In this work, we use a
redistribution library for linear systems in addition to the
MPI parallel programming model, which enables the use
of a subset of MPI processes to solve the coarse pressure
system and avoids scaling issues when a larger number of
MPI processes is required elsewhere in the resolution pro-
cess. The performance of this technique has been assessed
on oil reservoir models.

This paper is organized as follows. InSection 2, we
brie”y present the two-phase ”ow model. We introduce
some notations and recall the MMsFE method inSection 3.
First numerical results are then presented inSection 4. The
different parallel programming techniques mentioned before
are detailed and discussed inSection 5. The performances of
the MMsFE method used along with the techniques
presented inSection 5are evaluated inSection 6. At last,
concluding remarks and perspectives of works are summa-
rized in Section 7.

2 Mathematical model

In this section, we “rst describe a simpli“ed model for two-
phase ”uid ”ows in porous media. Then, we brie”y outline a
“nite-volume method based on a sequential splitting that is
classically used to solve the corresponding system of
equations.

2.1 Two-phase ”ow problem

We consider an immiscible and incompressible two-phase
”ow in a porous medium X. Here, X is a subset ofRd

with d � 2. Let us denote by subscripts ••w•• and ••o•• the
water and oil phases respectively. The equations governing
”uid ”ows in a heterogeneous porous medium are derived
from the conservation of mass. For each phasea, we write
the mass balance

/ o
ot Sa þ r � va ¼ qa; ð1Þ

where / denotes the total porosity or saturated volume
fraction, Sa the phase saturation,va the phase velocity,
and qa a source (or sink) term. Since both ”uids “ll the
porous volume, the saturations satisfy the closure
equation

X

a2 w;of g

Sa ¼ 1: ð2Þ

In this work, gravity and capillary pressure are not
taken into account. Hence, according to the two-phase
extension of Darcy•s law [16], the velocity va can be formu-
lated for each phasea as follows:

va ¼ �
kr;a

l a
K r P; ð3Þ
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where K is the permeability tensor, l a the viscosity and
kr,a is the saturation dependent relative permeability of
the phasea. We introduce the phase mobility

ka ¼
kr;a

l a

and the total mobility kðSwÞ ¼kwðSwÞ þ koð1 � SwÞ.
Combining (1), (2) and (3), the following pressure equa-

tion can be obtained:

v ¼ � kðSwÞK r P;

r � v ¼ q;
ð4Þ

wherev ¼ vw þ vo and q ¼ qw þ qo. Then, by introducing
the water fractional ”ow

f wðSwÞ ¼
kwðSwÞ
kðSwÞ

and writing the pressure gradient with respect to the total
velocity v, this leads to the saturation equation

/ oSw
ot þ r � f w vð Þ ¼qw: ð5Þ

Let oX be the boundary ofX whose outward unit nor-
mal vector is denoted by n. oX is partioned so that
oX = CD [ CN. Boundary conditions are imposed in the
following way for the pressure equation(4):

P ¼ PbðxÞ on CD;

v � n ¼ 0 on CN;

�
ð6Þ

and for the saturation equation (5):

Sw ¼ SbðxÞ if v � n < 0 on CD: ð7Þ

From now on, the notation S instead ofSw will be used
for simplicity•s sake.

2.2 Numerical resolution

The system of equations(4) and (5) could be solved by dif-
ferent ways [17]. Here, the splitting of the system into an
elliptic equation and a hyperbolic equation that was intro-
duced in the previous section is used to compute sequen-
tially both pressure and saturation according to the
scheme proposed in [18]. In a “rst step, the pressure equa-
tion (4) is solved at the current time step using saturation
values from the previous time step. Then the saturation
equation (5) is solved using the new pressure values. Thus,
at each time iteration n + 1, the system to be solved reads

r � v Pnþ 1; Sn
� �� �

¼ 0; ð8Þ

/
Snþ 1 � Sn

� t
þ r � f w SH

� �
v Pnþ 1; Sn

� �� �
¼ 0; ð9Þ

with the boundary conditions introduced in (6) and (7)
and Dt = tn+1 � tn. To evaluate the water fractional ”ow
in (9), a “rst possible choice consists in using an explicit

Euler scheme whereSH ¼ Sn leading to the IMPES for-
mulation (IMplicit in Pressure, Explicit in Saturation).
To ensure the stability of the saturation calculations, a
CFL condition on the time steps is required [19]. An impli-
cit Euler scheme can also be used. In that case,SH ¼ Snþ 1.
This second formulation is known as IMPIMS scheme
(IMplicit in Pressure, IMplicit in Saturation). Appendix
A.2 gives the complete discretization of this equation.
At last, the computation of the saturations Sn+1 requires
the resolution of a nonlinear system due to the presence of
the water fractional ”ow. This system is solved by means
of a Newton-Raphson method [20]. The solution obtained
with this method is unconditionally stable whatever the
time step � t is.

Hereafter, equation(8) is called the pressure equation
and equation (9) the saturation equation. The saturation
equation is discretized on the “ne mesh using an upwind
cell-centered “nite volume method [21] where the ”uxes
are computed either by means of the two-point ”ux approx-
imation (TPFA) [ 11] or by means of the MMsFE method.
The TPFA approximation is well-known to be consistent
and monotonous for Cartesian grids. Since, in this work,
our numerical examples only use this type of grid, the
TPFA discretization will be considered for our comparisons
as the “ne reference solution.Appendix A recalls that dis-
cretization. Note that, when dealing with unstructured
meshes, multi-point ”ux approximations [22] or mimetic
“nite difference methods [23] can be employed to ensure
the consistency of the ”uxes. The next section introduces
the MMsFE method.

3 Mixed multiscale “nite element method

Multiscale “nite element methods provide an ef“cient way to
compute the pressureP and the velocityv by solving a linear
system de“ned on a coarse mesh while taking the details of a
geological model into account at a “ne-scale. Unlike upscal-
ing techniques which average the values of the rock proper-
ties, multiscale methods actually compute basis functions
whose shape depends on the space variability of these prop-
erties. The construction of such basis functions is achieved
through the resolution of local subproblems called cell
problems. Then a coarse linear system is assembled using a
variational formulation based on these basis functions.

3.1 Multiscale mesh construction

Corner-point geometry grids [24] which are composed of
hexaedral cells with a Cartesian topology are usually used
for real test cases. Here, as a “rst trial, only Cartesian grids
were considered for this study since the coarsening of such
grids is easy for parallel simulations. In the following of this
section, we “rst introduce some notations and the construc-
tion of the coarse mesh afterwards.

3.1.1 General notations

Let K h be a conforming polyhedral mesh of the domainX
such that h ¼ maxk2K hhk wherehk is the diameter of the cell
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k 2 K h. Let F h denote the set of faces related to the mesh
K h. Within this set, F i

h stands for the group ofinner faces:

F i
h ¼ r ¼ ok1 \ ok2jk1; k2 2 K hf g

and F b
h for the group of boundary faces:

F b
h ¼ r � ok \ oXjk 2 K hf g :

Let us denote byF D
h the set of boundary faces included in

CD:

F D
h ¼ f r 2 F b

hjr � CDg:

For all cell k 2 K h, we also de“ne

F h;k ¼ f r 2 F hjr � okg;

F i
h;k ¼ F h;k \ F i

h;

F b
h;k ¼ F h;k \ F b

h;

andF D
h;k ¼ f r 2 F b

h;kjr � CDg:

Conversely, let us de“ne for allr 2 F h

K h;r ¼ f k 2 K hjr � okg:

For all inner face r 2 F i
h, an orientation is arbitrarily

chosen and a unit normal vectornr is de“ned based on this
orientation. For all k 2 K h;r , we denote bynr ,k the unit
normal vector of r oriented outside of cellk and we de“ne
er ;k ¼ nr ;k � nr .

3.1.2 Upgridding

We denote byK h the “ne mesh and byK H its correspond-
ing coarse mesh withh ¼ H. In our case, the coarse mesh
K H is generated by agglomerating the “ne cellsk 2 K h

by means of a uniform partitionning of the structured grid
K h. By that way, the coarse mesh faces are still aligned
with the underlying “ne grid. An example of such a mesh
is given in Figure 1. Note that other works [25] proposed
”ow-based coarsening methods that were also applied along
with multiscale methods.

Finally, we de“ne the following sets mapping elements
of K h and K H :

M H;h
K ¼ f k 2 K hjk � Kg;

M h;H
k ¼ f K 2 K H jk � Kg:

3.2 De“nition

The MMsFE method introduces the multiscale “nite ele-
ment space

V H ¼ f qH 2 Hðdiv; XÞ: qHjK 2 MSðKÞ; 8K 2 K H g

to approximate the coarse ”uxes
R

R v � nR;K ds for all
b 2 f i ; bg; K 2 K H ; R 2 F b

H;K . Here MSðK Þ denotes a

“nite element space spanned by basis functions
wR ¼ � kK r / R; R 2 F b

H;K . These basis functions are com-
puted by solving cell problems on the “ne underlying cells
k 2 M H;h

K . The degrees of freedom ofqHjK 2 MSðK Þare the
”uxes

R
R qHjK � nR;K ds. In its primary formulation [ 5], the

boundary conditions of the cell problems were chosen inde-
pendently from the local heterogeneities. An oversampling
technique consisting in extending the local domain of the
cell problem was proposed to reduce the impact of these
boundary conditions and improve the accuracy of the
method. However, the use of oversampling may induce a
loss of volume balance. Static and dynamic strategies were
proposed in [26] to de“ne the boundary conditions in con-
servative ways. These two approaches are the ones we
tested in this work and we now detail. In the static
approach, the cell problem of a faceR 2 F i

H is de“ned on
a domain K 1;2 ¼ K 1 [ K 2 with K 1; K 2 2 K H;R:

wR ¼ � kK r / R in K1;2;

divðwRÞ ¼ eR;K1w1 in K1;

divðwRÞ ¼ eR;K2w2 in K2;

wR � n ¼ 0 onoK1;2;

8
>>><

>>>:

ð10Þ

wheren is the unit normal vector oriented outside of the
domain K1,2. Functions w are weight functions verifying

wiðxÞ ¼
hðxÞR

Ki
hðyÞdy

�

Different choices are possible forh, the most simple
being h = 1. In this work, we choose

Fig. 1. Construction of the coarse cartesian grid on the right
from the “ne cartesian grid on the left. In the bottom, the
agglomeration is shown.
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h ¼ kKn Rð Þ �nR:

Note that the sink and source terms along with the
no-”ux boundary conditions on oK1;2 de“ned for problem
(10) imply that the ”ux of wR through R is equal to one.
Functions / R are de“ned up to one constant. In practice,
these basis functions are chosen so that thew-weighted
average is equal to zero. For a faceR 2 F D

H and
K 2 K H;R, the related basis function is de“ned in the cell
K and is solution to

wR ¼ � kK r / R in K;

divðwRÞ ¼ w in K;

wR � n ¼ 0 onoK R;

wR � n ¼ wR onR;

8
>>><

>>>:

ð11Þ

where function wR is given by

wRðxÞ ¼
hðxÞR

R hðyÞdy
:

The static approach sometimes fails to reach a good
accuracy in the computation of the ”uxes since it only takes
local properties into account. Hereafter, when the static
approach is used to compute the basis functions, these func-
tions will be referred to as local basis functions. The idea of
the dynamic approach consists in computing a one-phase
”ow at the “ne scale whenever new boundary conditions
are de“ned during the simulation. The obtained velocity
“eld vmono is then used to de“ne the boundary conditions
of the cell problem. Thus, for each faceR 2 F i_D

H and each
cell K 2 K H;R, the basis functionswK;R and / K;R are de“ned
in the following way:

wK;R ¼ � kK r / K;R in K;

r � ð wK;RÞ ¼ eR;Kw in K;

wK;R � n ¼ 0 onoK R;

wK;R � n ¼ vmonoðxÞ�nR
R

vmono�n
onR:

8
>>>>>><

>>>>>>:

ð12Þ

Hereafter, the basis functions obtained with the
dynamic approach are referred to as global basis functions.
Let us remark that a slightly different strategy can be
applied. It consists in using, simultaneously, several global
pressure “elds obtained with different prescribed boundary
conditions. In that case the boundary conditions of the cell
problems remain “xed during the simulation but the
number of degrees of freedom per coarse face is increased.
This strategy, as suggested in [27], helps to improve the
accuracy of the method.

In this work, the cell problems (11) and (12) are discre-
tized using a TPFA scheme.

Figures 2 and 3 show multiscale basis functions
computed on a one-dimensional mesh with 1000 cells and
a coarse mesh made of two coarse cells. The three multiscale
basis functions obtained for a constant permeability “eld
equal to one are represented inFigure 2. They correspond,
in that case, to the hat functions used to approximate the
velocity in the RT0 mixed “nite element space. Both graphs

on Figure 3 depict the three multiscale basis functions and
the permeability values used to compute them.

3.3 Update of the basis functions

In the IMPES or IMPIMS schemes, the total mobility k is
updated after each resolution of (15), which requires an
update of the basis functions. However, the variations ofk
are usually small from one time step to one another in regions
far from the water saturation front. Theferefore, before a new
resolution of the pressure equation, only a few basis functions
need to be recomputed. To trigger these updates in cells
where signi“cant mobility variations occur, we chose the cri-
terion proposed in [28]. Considering the quantity

Fig. 2. 1-d basis functions computed withK = Id .

Fig. 3. On the left, 1-d basis functions computed with
K = K Id , K being represented on the right (in mD).
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Dn
k

� �
k ¼

k Sn
k

� �

k Slast
k

� � ;

where Slast
k is the saturation computed during the last

update of the basis functions, a thresholdetol is “xed
and for each coarse cellK 2 K H where

max
k2K

Dn
k

� �
k > 1 þ etol or min

k2K
Dn

k

� �
k <

1
1 þ etol

the basis functionswR and / R for each faceR 2 F i_D
H;K are

recomputed.

4 Application of the method

The MMsFE method described above was implemented
using the HPC simulation framework developed at IFPEN
and based on the C++ Arcane platform [29]. Mesh data
structures, parallelism, I/Os and scalable linear solvers are,
for instance, some core functionalites provided by this plat-
form. In our experiments, the coarse and “ne linear systems
are solved using the BiCGStab solver from PETSc [30] pre-
conditioned with an AMG preconditioner from Hypre [31].
All cell problems are solved using UMFPACK linear solvers
[32]. The threshold etol = 0.8 is used to trigger locally an
update of the basis functions. In our implementation, at each
time step, once all ”uxes have been computed by one of the
two methods (TPFA or MMsFE), the new water satura-
tions are computed implicitly using a Newton-Raphson
non-linear solver. The value of the time step is adjusted dur-
ing the simulation according to the number of the Newton-
Raphson iterations: it is increased if the number of iterations
is less than a number given by the user, it remains the same if
this number is exceeded while obtaining the convergence
and is decreased if the convergence is not reached. This clas-
sical strategy enables the use of big time steps during the
simulation but leads to update a larger number of basis func-
tions at each time iteration. It may not be the optimal strat-
egy for the MMsFE method since smaller time steps require
fewer updates. But we adopted it for the runs carried out
with the TPFA scheme and used the same sequence of time
steps for the MMsFE method in order to have the solution at
the same times.

The differences in the ”uxes given by the TPFA method
and the MMsFE method are measured by computing the
relative L2 error of the water saturations:

������������������������������������������P

k2K h

kj j / kðS
f
k � Sms

k Þ2
r

������������������������������P

k2K h

kj j / kðS
f
kÞ2

r : ð13Þ

In the following section, we introduce the tenth SPE
test case which has become a classical benchmark for
upscaling and multiscale methods over the past years [33].
We compare, for this case, the solutions obtained with a
local and global calculation of the basis functions.

4.1 SPE10 test case

The reservoir de“ned in the tenth SPE test case is a par-
allepiped made of 60 cells of size 20 ft inx-direction, 220 cells
of size 10 ft iny-direction and 85 cells of size 2 ft inz-direc-
tion. Unlike the original data set, the permeability values are
here taken equal to the horizontal values and truncated to
0.1 mD if they are below this threshold. This reduces the
permeability contrasts but make all cells active in the reso-
lution process. Figure 4 shows the permeability “eld in
two layers of the Tarbert and Upper Ness formations.

Since our main objective in this paper is to quantify the
in”uence of the permeability heterogeneities on the two dif-
ferent pressure solvers, we used a constant porosity value
throughout the domain. Note that the contrasts of porosi-
ties here only have an impact on the conditioning of the lin-
earized problem related to the saturation equation(9).
Relative permeabilities are chosen such that

krw ¼
S� Swi

1 � Swi � Sor

� � 2

andkro ¼
1 � S� Sor

1 � Swi � Sor

� � 2

;

with Swi ¼ Sor ¼ 0:2. Oil and water viscosities are equal
to 1 cp and 0.3 cp respectively. On the reservoir bound-
aries, the following conditions are imposed:

Fig. 4. Permeability in m2 of the 1st layer (bottom) in the
Tarbert formation and the 85th layer (top) in the Upper Ness
formation.
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… a “xed pressure of 1000 psi along with a water satura-
tion equal to 1 on the bordery = 0,

… a “xed pressure of 500 psi on the bordery = ymax,
… no ”ux on the other boundaries.

The computation is performed on a coarse grid of size
12 · 20 · 17. The simulations were run until the water vol-
ume injected into the reservoir reached 5% of its porous
volume.

Figure 5 shows the water saturations obtained with
the TPFA method on the “ne grid and with the MMsFE
method using local basis functions and global basis func-
tions. The use of dynamic information for the resolu-

tion of the cell problems enables the global approach to
better reproduce the “ne reference solution compared to
the local one. The relativeL2 error de“ned in (13) is indeed
equal to 6.4% for the global method and to 11.6% for the
local one.

5 Parallel computation

This section focuses on the parallel implementation of the
MMsFE method and highlights some key points to ensure
performance and scalability on clusters. The performances
of the MMsFE method are analyzed through the tenth
SPE test case introduced in the previous section. The number
of MPI processes used for this test case is relatively small but
scalability issues can already be found out on that example.

The results presented hereafter were obtained thanks to
simulations performed on the IFPEN cluster. On this
machine, each SMP node is composed of 2 Intel Xeon
octo-cores processors E7-2670 (2.6 GHz). All 378 nodes
are interconnected with QDR in“niband links (40 Gbit/s)
and offer a peak of 110 Tera”ops.

Fig. 5. Saturation solutions obtained with the TPFA method
(bottom) and the MMsFE methods with global basis (middle)
and local basis (top) functions.
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Fig. 6. CPU times and ef“ciency of the TPFA and MMsFE
solvers.
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5.1 Pure MPI approach

A classical SPMD domain decomposition is used to
distribute the calculation work into multiple tasks. Each
parallel task works on a subdomain of the reservoir and
the communications between the subdomains are done
using the standard MPI interface.

The upper plot in Figure 6shows the CPU times obtained
with the classical TPFA pressure solver and with the local
and global MMsFE solvers as a function of the numbler of
MPI processes. Here the acceleration rises up to a factor 9
but falls to 4 when more than 16 MPI processes are used.
The lower plot in Figure 6 shows that a better ef“ciency is
achieved with the TPFA solver than with the MMsFE
solvers.

5.1.1 Balancing the calculations of the basis functions

The performances of multiscale methods highly depend on
the number of basis functions that should be recomputed
at each time step. As mentioned in Section 3.3, we used a
criterion based on the variations of the total mobility to
trigger an update of the basis functions de“ned in the
regions where these changes occur. Thus, the parallel per-
formance of the MMsFE method depends on the way the
saturation front is distributed among the processors. In
the tenth SPE test case introduced in the previous para-
graph, the water ”ows from the boundary Ymin to the
boundary Ymax and this direction should be taken into
account when creating the domain decomposition. In the
case depicted inFigure 7 only a small part of the processors
will be used to compute the basis functions whereas a better
scalability can be achieved in the case represented in the
right plots of Figure 7. With unstructured mesh, it is still
possible to use weights in the connectivity graph to guide
the partition of the domain in some directions. But, in oil
reservoir simulations, the ”ow can be localized for some
time around a few wells and, in that case, one has to resort
to a dynamic load balancing of the mesh.Figure 8 shows
the CPU time used for the computation of the local and glo-
bal basis functions as a function of the MPI processes in the
tenth SPE test case.

5.1.2 Balancing the resolution of the coarse linear
system

A second issue comes from the number of MPI processes
used to solve the coarse linear system. Since multiscale
methods enable to agglomerate a signi“cant number of “ne
cells into a coarse one, the resulting linear system can be
small in comparison to the number of MPI processes which
are available, leading to scalability problems as illustrated
in Figure 9 for the tenth SPE case. Here, the CPU time
increases when more than 16 processes are used. On the
other hand, the saturation solver which only works on the
“ne grid, keeps a good scaling when increasing the number
of MPI processes as shown inFigure 10.

A “rst solution to improve the speed-ups related to this
step of the method could consist in using a hybrid parallel
programming technique which uses both MPI and threads
processes, in order to reduce the number of MPI processes

Fig. 7. Two domain decompositions: on the top, the partition is
made according to directionX and Z whereas no direction is
favoured on the bottom.
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assigned to the coarse linear solver [34]. But then, the ques-
tion of the optimal number of MPI processes that should be
dedicated to this solver brings up and, in case of multiscale
methods, this number could be signi“cantly different from
the one required by the other parts of the simulator. Keep-
ing too many processes will reduce the performances as it
was previously pointed out, since communications through
the network will represent a large part of the time related to
the iterative process. Conversely a reduced number of
processes would penalize the other parts of the simulator.
Concerning the implementation, hybrid parallel program-
ming requires some effort since all existing software compo-
nents of the simulator should be threadsafe. Thus, for these
reasons and as suggested in [35], we propose in the next sec-
tion a two-level MPI approach to reduce the distribution of
our coarse linear systems. Note that this approach remains
complementary to a hybrid parallel programming model.

5.2 A two-level MPI approach

The scalability problem related to the coarse pressure linear
system and mentioned in the previous section is similar to
the issue pointed out in [35] for coarse operations in multi-
grid staging. In this work, the authors resort to a second
level MPI communicator set on a small part of the machine
to circumvent this dif“culty. The role of this second commu-
nicator consists in gathering the coarse data, processing
them and sending them back to the “rst level MPI commu-
nicator. By that way less computing resources are used. The
same strategy was adopted here by using a redistribution
library for linear systems. This library, called ALEPH for
Linear Algebra Extended to Hybrid Parallelism [36] is said
to be ••hybrid•• in the sense that it uses different MPI com-
municators. The redistribution is done in a smart way using
the topology of the machine. SMP nodes are “lled in a
compact manner in order to minimize costly operations with
the second level MPI-communicator. Moreover, cache opti-
mizations have been performed to minimize memory com-
munications between the communicator levels. For
instance, the global indexes of the linear systems are sent

only once during the simulation. To solve the coarse pressure
system, the ALEPH library collects, on a user-de“ned subset
of MPI processes, all contributions to the matrix and the
right-hand side that have been computed by all MPI pro-
cesses in the “rst MPI-communicator. Then, the compacted
coarse pressure system is solved using only this subset of
MPI processes in the second level MPI-communicator. This
resolution may be carried out by any MPI-based library
such as PETSc, HYPRE, Trilinos, etc. In this work, the
PETSc library was used. At the end of the resolution, the
solution is distributed over all MPI processes. The ALEPH
work”ow is summarized in Figure 11 for an example of
machine with two nodes composed of four processors.

For the local approach,Figure 12 shows the CPU time
taken by the coarse pressure solver according to the number
of MPI processes when the ALEPH library is used or not.
Here the redistribution operated by ALEPH enables to
keep the CPU time below the limit of 1.5 s when more than
16 MPI processes are used. The same trend can be observed
in Figure 13 with the global approach.
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Since this reduction on a small subset of MPI processes
is only performed for the resolution of the coarse linear
system, this strategy enables the other parts of the resolu-
tion process, and in particular the saturation solver, to
run on a wider number of MPI processes. Nevertheless, a
signi“cant part of the available nodes remains unused dur-
ing that stage and to make the most of these calculation
resources, other programming techniques such as asynchro-
nism should be studied.

6 Another example of speed-ups obtained with
the MMsFE method

The size of the grid of the tenth SPE test case, presented in
Section 4.1, is not very large in view of the calculation
resources offered by the clusters at the present time. We
therefore introduce here a second test case with a larger grid
size where the speed-ups provided by the MMsFE method
turn out to be more signi“cant.

6.1 Description

That case takes up again the main parameters of the tenth
SPE example. Only the dimensions of the domain and the
permeability “eld change. Here, the “ne-grid•s size is
256 · 256 · 256. A geostatistical facies realization was cre-
ated on that grid. Two facies were used to model high and
low permeable regions within the reservoir with proportions
0.6 and 0.4 respectively.Figure 14 shows the obtained per-
meability “eld. The size of the coarse grid is here equal to
32 · 32 · 32. The global approach is used to compute the
cell problems.

6.2 Results

The pressure solutions given by the TPFA and MMsFE
methods are represented inFigure 15. The water satura-
tions obtained with the ”uxes related to these two methods
are shown in Figure 16. Here the relative L2 distance
between these two solutions is equal to 3%.
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All simulations were performed using 256 MPI pro-
cesses over 16 nodes.Table 1 gives the CPU times obtained
with the TPFA and MMsFE pressure solvers. Without the
use of the ALEPH library, all MPI processes are used for
the resolution of the coarse linear systems. Several ALEPH
con“gurations have been tested up to the case where 128
processes are dedicated to the resolution of these systems.
The processors used for each con“guration are selected
taking into account the topology of the nodes. For instance,
the con“guration using 128 processes uses exactly 8 nodes,
the con“guration using 32 processes uses 2 nodes and so on.
The best con“guration leads to a speedup of nearly 37
with 16 processes, which corresponds to solve coarse
problem on one single node. These results tend to suggest
that signi“cant accelerations can be achieved during the
resolution of the coarse system by limiting extra-node
communications, which was carried out here by reducing
the numbers of MPI processes and nodes at the same
time.

Table 2 gives the CPU times of the ALEPH solver using
16 processes spread over one to 16 nodes. We show that the

Fig. 15. On the planez = zmax, pressure solutions (in Pa) of the
TPFA method on the top and the MMsFE method on the
bottom.

Fig. 14. Permeability values of the second example (in m2).

Fig. 16. On the plane z = zmax, water saturation solutions of
the TPFA method on the top and the MMsFE method on the
bottom.
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best con“guration leads to use only one node and to maxi-
mize the intra-node MPI communications and that perfor-
mances decrease when more nodes are used.

The total simulation time, including the pressure and
saturation resolution times, is equal to 1255 s with the “ne
TPFA scheme (1137 s for the pressure equation, 118 s for
the saturation equation) and to 156 s with the MMsFE
solver (30 s for the pressure equation, 126 s for the satura-
tion equation), leading to a global speedup of 8.

7 Conclusion

As shown in this work, two factors can limit the scalability
of the MMsFE method: the calculations of the basis func-
tions which may be unbalanced between the subdomains
and the size of the global coarse linear system which can
be small compared to the number of allocated calculation
resources. Different solutions have been mentioned in
Section 5.1.1to tackle the “rst problem. But our works were
mainly focused on the second one for which we propose a
two-level MPI approach.

Our approach consists in reducing the number of MPI
processes to a few ones which are concentrated on a few
nodes when solving the coarse pressure system. This strat-
egy, which was carried out here by using the ALEPH
library, enables to decrease temporarily the number of
MPI processes for that step of the MMsFE method while

using the whole set of MPI processes for the other parts
of the simulator. Compared to a hybrid programming
model which may affect other parts of the application and
thus may require more efforts in terms of implementation,
this reduction and clustering of the MPI processes is only
performed within the MMsFE method.

This technique leads to signi“cant speed-ups for the
two-phase model and for the mixed multiscale method con-
sidered in this work. But other mixed methods, like the ones
introduced in [37] and [38] and based on the Generalized
Multiscale Finite Element Method, could be used as well.
These last two methods feature, in particular, the possible
use of more basis functions in each coarse element and
can ensure spectral and mesh convergences.

The next step will be to test the dynamic load balancing
for the calculation of the basis functions along with the
two-level MPI strategy. In view of reducing computing
times for oil and gas reservoir simulations, well boundary
conditions as well as a more complicated three-phase
Black-Oil model will be considered for the following of this
study. The results of these tests will thus turn out the
potential of acceleration that the MMsFE method can
provide for industrial applications when used in combina-
tion with these parallelism techniques.
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Appendix A

Fine scale discretization

Finite volume methods (21) are widely used for groundwa-
ter and reservoir simulations due to the easiness of their
implementation and the mass conservation property satis-
“ed by the computed ”uxes. In the following, we “rst
remind the reader of the two-point ”ux approximation used
in this work to approximate the pressure gradient in prob-
lem (4) and then present the discretization of the saturation
equation (5).

A.1 Pressure equation

Integrating (8) over a cell k 2 K h and applying the diver-
gence theorem leads to
R

k r � v dx ¼
P

r 2F h;k

R
r v � nr ;k ds

¼
P

r 2F i
h;k

R
r v � nr ;k dsþ

P

r 2F D
h;k

R
r v � nr ds:

Let k 2 K h, r 2 F i
h;k and l 2 K h;r be the cell facingk

next to r . The diffusive ”uxes are approximated using a
two-point scheme for the gradient term. Thus

Z

r
vðPnþ 1; SnÞ �nr ;k ds; ki

r Ti
r Pnþ 1

k � Pnþ 1
l

� �
¼ Ui

k;r ;

where the transmissivity T i
r is computed using a har-

monic average

Ti
r ¼ jr j

jxk � xr j
K k

þ
jxl � xr j

K l

� � � 1
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and the total mobility ki
r is equal to the cell mobility

which is upstream to r with respect to the pressure
gradient:

ki
r ¼

k Sn
k

� �
if Pnþ 1

k � Pnþ 1
l ;

k Sn
l

� �
otherwise:

(

Similarly, for each boundary facer 2 F D
h and each cellk

such that k 2 K h;r , the ”ux is given by
Z

r
v � nr ds • kb

r Tb
r Pnþ 1

k � Pbðxr Þ
� �

¼ Ub
k;r ;

where

Tb
r ¼ jr j

K k

jxk � xr j

and the total mobility kb
r is such that

kb
r ¼

k Sn
k

� �
if Pnþ 1

k � Pbðxr Þ;

k Sb xrð Þð Þ otherwise:

�

Finally, the discrete pressure equation for one cellk 2 K h

reads
X

r 2F i
h;k

Ui
k;r þ

X

r 2F D
h;k

Ub
k;r ¼ 0: ð14Þ

This set of equations forms a linear system whose matrix
has a strictly dominating diagonal, thus admitting a
unique solution Pnþ 1.

A.2 Saturation equation

An upwind approximation of the ”uxes is also used for
equation (9). By integrating this equation over one cell
k 2 K h and one time step, we obtain

Snþ 1
k ¼ Sn

k �
� t
kj j / k

X

r 2F i
h;k

Fi;H
w;r þ

X

r 2F D
h;k

Fb;H
w;r

0

@

1

A ; ð15Þ

where the discrete ”uxesF i;H
w;r and F b;H

w;r are de“ned using
an upstream scheme de“ned as follows:

Fi;H
w;r ¼ f w SH

k

� �
Ui

k;r

� 	 þ
þ f w SH

l

� �
Ui

k;r

� 	 �

and

Fb;H
w;r ¼ f w SH

k

� �
Ub

k;r

� 	 þ
þ f w Sb xrð Þð Þ Ub

k;r

� 	 �

where a+ = max( a, 0) and a� = min( a, 0). Here, the
exponentH refers either to time stepn or n + 1 depending
on the use of an IMPES or IMPIMS scheme.
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