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Non-Brownian suspension of monodisperse spherical particles, with volume frac-

tions ranging between φ = 0.05 and 0.38 and particle Reynolds numbers ranging

between Rep = 0.002 and 20, in plane Couette shear flows is investigated using

three-dimensional particle resolved numerical simulations. We examine the effects of

volume fraction and particle Reynolds number on the macroscopic and microscopic

stresses in the fluid phase. The effective viscosity of the suspension is in a good agree-

ment with the previous empirical and experimental studies. At Rep = 20, however,

the effective viscosity increases significantly compared to the lower particle Reynolds

number simulations in the Stokes flow regime. Examining the stresses over the depth

of the Couette gap reveals that this increase in wall shear stresses at high particle

Reynolds numbers is mainly due to the significantly higher particle phase stress con-

tributions. Next, we examine the momentum balance in the fluid and particle phase

for different regimes to assess the significance of particle/particle interaction and fluid

and particle inertia. At the highest particle Reynolds number and volume fraction,

the particle inertia plays a dominant role in the momentum balance, the fluid inertia

is non-negligible, while the short-lived contact forces are negligible compared to these

effects. For all other regimes the fluid inertia is negligible, but the particle inertia and

contact forces are important in the momentum balance. Reynolds stresses originated

from velocity fluctuations do not contribute significantly to the suspension stresses

in any of the regimes we have studied, while the reduction in the shear-induced par-

ticle rotation can be a reason for higher wall shear stress at Rep = 20. Finally, we

study the kinematics of particles, including their velocity fluctuations, rotation and

diffusion over the depth of the Couette gap.The particle diffusion coefficients in the

cross flow direction exhibit an abrupt increase at Rep = 20.
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ance
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I. INTRODUCTION

Suspensions of particles in a fluid are ubiquitous in many natural flows such as mud and

gravity currents, as well as in numerous industrial flows, e.g. cosmetics, food processing,

slurries, and fresh concrete. In such flows, either the rheological type properties for the

entire suspension, or the dynamical behaviour of particles are of interest. Investigations

of rheological properties have been particularly focused on finding correlations between the

effective viscosity and the volume fraction of the suspension for spheres, e.g. the derivation by

Einstein1, and the correlations by Krieger-Dougherty2 and Kruif3 for dilute to intermediate

particle concentrations, and the correlations suggested by Boyer et al.4 for dense particle

concentrations. In addition, attempts have been made to theoretically calculate the effective

viscosity of suspensions to second order in volume fraction, e.g. the work by Batchelor &

Green5 and Brady et al.6. On the aspect of the dynamical behaviour of particles, the diffusion

of particles has been attributed to the anisotropy of local particle stresses in a large number

of previous studies7–11. The measured dispersion coefficients are highly dependent on the

shear rate gradients and particle/particle interactions12–14.

It is well known from previous studies that the microscopic structure of the stresses plays

a significant role in determining the macroscopic stresses of the suspension. In a pioneering

paper, Batchelor15 established the contribution of micro-scale stresses to the bulk stresses

of the suspension, in an integral form over a volume of the suspension. Conventionally,

definitions of macroscopic stresses in suspensions involve averaging of the flow for both phases

over an intermediate length scale, sometimes referred to as a mesoscale, which is larger than

the scale of particles, but smaller than the large scale of the physical domain, e.g. see

references16–18. By applying the Cauchy’s stress principle to linear and angular momentum

balance equations and volume averaging, Zhang & Prosperetti19 found the hydrodynamic

stresses in the suspension at the mesoscale. Based on the earlier description of stresses

in suspensions by Batchelor15, suspension mass and momentum balance models have been

developed by Nott & Brady7 and Morris & Brady20, and later revisited by Lhuillier9 and Nott

et al.11. These models describe the role of hydrodynamic and non-hydrodynamic forces in

contribution of solid particles to the stresses of the whole suspension and particle migration

fluxes in Stokes flow regimes.

The bulk stresses in suspensions and migration of particles have been measured in sev-
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eral experimental studies4,10,14,21 and compared to the volume averaged models mentioned

above10,22. However, in laboratory experiments it is difficult to have access to the microstruc-

ture of the suspension. To gain more insight into the microscale stresses and their link to

mesoscale stresses, numerical simulations that resolve the flow features at the particle length

scale are better suited tools. However, in particle-resolved simulations (PRS) the ratio of

the largest length scale that can be modelled to the size of particles is quite limited, placing

practical constraints on mesoscales of interest.

Some previous PRS, although not very numerous, have been dedicated to examining the

properties of a suspension of neutrally buoyant rigid spherical particles in a plane Couette

flow. Yeo & Maxey23 used a forced-coupling method to simulate the suspension of spherical

particles in a Couette flow for particle volume fractions 0.2 < φ < 0.4 and a particle Reynolds

number of Rep = 2. They examined the effects of domain height, which varied between 5

to 15 times the particle diameter, on suspension microstructures and identified wall, buffer

and core regions, with the height of each region depending on the volume fraction and total

height of the numerical domain. The effects of domain confinement on layering of particles in

a plane Couette flow can lead to a significant drop in the effective viscosity of the suspension.

This was demonstrated in the simulations of Fornari et al.24, using an immersed boundary

method and a maximum height of the Couette gap of 6 times the particle diameter. Using

the same method, and in a domain 5 times the particle diameter, Picano et al.25, examined

the effects of volume fraction and particle inertia on the effective viscosity of a suspension in

a Couette flow. Haddadi & Morris26, following an earlier study from the same group27, used

the lattice-Boltzmann method to examine the microstructure of the suspension in a Couette

flow for 0.1 < φ < 0.35 and 0.005 < Rep < 5, in a gap 10 times larger than the particle

diameter. They examined the effects of volume fraction and particle Reynolds number on

different parts of the particle stresses: the stresslet originated from the surface traction,

particle acceleration and particle Reynolds stresses.

Particle-resolved numerical simulations have also been used to study the suspension of

spherical particles in a channel flow configuration. Lashgari et al.28 and Lashgari et al.29

identified different flow regimes: "laminarlike", "inertial shear-thickening" and "turbulent-

like" depending on the particle volume fraction and bulk Reynolds number in a channel

flow. Their classification was based on the ratio of the contribution of viscous, particle and

Reynolds stresses to the total suspension shear stress. In both studies an immersed bound-
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ary method was used to simulate a suspension of particles with volume fractions between 0

and 0.3 the ratio of the channel width to particle diameter was 10.

While volume-averaged suspension balance models7,11 and most numerical simulations of

suspensions13,30–32 are focused on the Stokes flow, more recent particle-resolved numerical

simulations have explored the inertial effects on stresses in suspensions and the dynamics of

the particles. The inertia of particles have been shown to increase the effective viscosity of the

suspension25,27–29,33. Picano et al.25 attributed the shear-thickening behaviour of suspensions

at higher Reynolds numbers to the creation of shadow regions in the suspension at high fluid

inertia that contributes to higher effective volume fractions. For channel flows, Lashgari et

al.29 show that the effective viscosity of the suspension increases at higher Reynolds numbers

due to increased Reynolds stresses. They argue that this increase in the effective viscosity

at higher Reynolds number is similar to the higher effective viscosity at higher particle

fractions as they both can be characterized as the Bagnoldian inertial regime34. In the latter

flow, however, the reason for higher shear stresses on the walls was higher contributions

from particle stresses. For a Couette flow configuration, Haddai & Morris26 showed that

increasing the particle Reynolds number increases the particle normal stresses due to high

contributions from the Reynolds stresses , while the particle acceleration stresses remain

negligible. However, in their study particle and wall shear stresses were not significantly

affected by the increase in Rep. Based on laboratory measurements in a coaxial-cylinder

rheometer, Linares et al.33 discussed that at sufficiently large Reynolds numbers a transition

to turbulence leads to an increase in the effective viscosity. Even before this transition, they

observed an increase in the effective viscosity with increasing Reynolds number for volume

fractions φ ≤ 0.3.

Our goal in the present study is to use PRS to study the suspension of neutrally buoyant

spherical particles in a plane Couette flow, with a gap height 10 times the particle diameter,

for volume fractions 0.05 < φ < 0.38 and 0.002 < Rep < 20. We examine the effect

of increasing φ and Rep on the bulk suspension shear stress and the microscopic stresses

in the fluid phase. This part of our study reveals that at Rep = 20 the shear stress on

the walls increase significantly, mainly due to the increase in particle phase shear stress,

compared to lower Reynolds number suspensions. To gain more insight into the significance

of inertial and particle/particle interaction effects, in different regimes and particularly at

high particle Reynolds numbers, we focus on the volume-averaged momentum balance for
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each phase. We also investigate the potential role Reynolds stresses and particle rotation

can play in increasing the suspension stresses. Finally, we briefly examine the diffusion of

the particles in the cross flow of the Couette gap for different flow regimes.

Our particle resolved simulations are performed using a distributed Lagrange multiplier/

fictitious domain (DLM/FD) method, e. g. see reference35, and using 24 points to resolve

the diameter of each particle, see reference36 for a sensitivity study of PRS to the number

of points per particle diameter. This method has previously been used by Gallier37 to

study the suspension of spherical particles, however for a fixed configuration of particles.

While most previous simulations of suspension flows have used either the lattice-Boltzmann

method26,38–40, the immersed boundary method25,29, or a forced-coupling method23, the FD

method, similarly, has the advantages of using a fixed mesh and simple force calculations

for the purpose of simulations of suspension flows41.

The paper is organized as follows. In section 2 we describe the physical problem we

will study. The numerical method is briefly reviewed in section 3. The macroscopic and

microscopic stresses are presented in section 4, and the momentum balance in section 5.

The kinematics of the particles, i.e. their velocity fluctuations, rotation and diffusion are

discussed in section 6, with the conclusions stated in section 7.

II. DESPRIPTION OF THE SUSPENSION PROBLEM

We consider a suspension of neutrally buoyant particles in a Newtonian plane Couette

flow in a Cartesian system of coordinates (x, y, z), with x, y and z denoting the streamwise,

vertical and spanwise directions, respectively; see figure 1. The shear flow is generated by

the horizontal movement of planes, vertically at a distance H apart, in opposite directions

at velocity U . This gives a bulk shear rate of γ̇ = 2U/H. Spherical particles, with diameter

D, are initially randomly positioned in this flow so that the volume fraction of solid particles

to the fluid is φ. The particle Reynolds number is defined as Rep = ργ̇D2/µ, with ρ being

the fluid density (and here also the particle density), and µ the fluid viscosity. For the fluid

phase, the equations of balance of mass and momentum are stated as11,15

∇.u = 0, and (1)

ρ
Du

Dt
= ∇.σf + b, (2)
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FIG. 1. Configuration of the suspension problem considered.

where u is the velocity field, σf the stress tensor for the fluid phase, and b the forces due to

the presence of solid particles or the non-hydrodynamic forces per unit volume, with D/Dt

denoting the material derivative. In the fluid phase, the stress tensor is

σf = −P I + µ(∇u+∇uT ), (3)

with I being the identity matrix. The rate of the strain tensor is e = (∇u+∇uT )/2. The

motion of each particle is described by the motion of a solid body in a fixed cartesian frame

of reference:

mp
dup

dt
= F + F c, (4)

J
dωp

dt
+ ωp × Jωp = T + T c, (5)

with the fluid velocity at the boundary of the particle, ub, found from the rigid body motion

constraint:

ub = up + ωp × r, (6)

where up and ωp denote the translational and rotational velocity of the centre of mass of

the particle, respectively, mp is the mass of each particle, J the inertia tensor, and r is the

distance from the centre of mass of particle. It should be noted that ωp × Jωp = 0 for
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spheres. The hydrodynamic force and torque are denoted by F , and T , respectively, while

the contact forces and torques are denoted by F c, and T c, respectively. The hydrodynamic

force and torque are calculated as: F =
∮
S
σf .ndS, and T =

∮
S
r × σ.ndS, with n being

the vector normal to the boundary of body, and S the boundary enclosing the body. The

contact forces between particles (and consequently contact torques) are modelled by by a

soft-sphere contact model that includes a normal Hookean elastic restoring force, a normal

viscous dissipative force, and a tangential friction force, see Wachs42 for more details. The

description of each of these forces is as follows.

FIG. 2. Illustration of a soft-sphere contact between two spherical particles i and j: Gi and Gj

are the gravity centers of the particles, δ is the overlap between the two particles, kn the stiffness

of the equivalent spring, γn the damping coefficient and nij and tij are the normal and tangential

unit vectors at the point of contact, respectively.

The normal Hookean elastic restoring force, Fel, is defined as

Fel = knδnij, (7)

where kn is the stiffness of an equivalent spring, δ is the overlap distance between particles

i and j (note that δ is negative during contact) and nij is the unit normal vector along the

centerline of the two particles, as illustrated in Figure 2. The viscous dissipative force, Fdn,

is

Fdn = −2γnMijUn, (8)

where γn is the damping coefficient,Mij = (mimj)/(mi+mj) is the reduced mass of particles

i and j, with mi and mj being the mass of each particle, and Un denotes the normal relative
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velocity between particles i and j. The tangential friction force, Ft, is found from

Ft = −min{µc|Fn + Fdn|, |Fdt|}tij, (9)

where Fn is the total normal force and Fdt is the dissipative friction force defined as

Fdt = −2γtMijUt − ks
∫ t

ts

Utdt, (10)

with µc being the Coulomb dynamic friction coefficient, γt the tangential dissipative friction

coefficient, Ut the tangential relative velocity between particles i, ks the static tangential

friction coefficient, ts the time at which contact started and tij the tangential unit vector

along the tangential relative velocity. The term −ks
∫ t

ts
Utdt matters in static or quasi-

static particle configurations only and thereby ks has been set to 0 from now on42. The

total contact force exerted on particle i is the sum of all the contact forces described above

originating from contacts with the neighbouring particles j:

F c
i =

∑
j

F c
ij =

∑
j

(Fel + Fdn + Ft)ij. (11)

In this contact model, we set the stiffness kn such that the maximum ratio of the overlap

distance to the radius, 2δmax/D, is less than 0.1%42. We also set the normal restitution

coefficient en and the Coulomb tangential friction coefficient µc to 0.9 and 0.4, respectively.

Based on the value of en, the damping coefficient, γn, is computed, while γt is set to a

value with the same order of magnitude as kn, see Wachs42 for details. We found the effect

of the friction coefficient or the normal restitution coefficient to be negligible for volume

fractions less than about 40%, in line with Gallier et al.43 who reported that for φ = 0.38

the increase in the Coulomb friction factor has a small increasing effect only on the effective

viscosity of the suspension. Moreover, based on a test that compared simulations with and

without lubrication forces, we found the effect of lubrication forces to be small for our range

of volume fractions. Therefore, our simulations compute lubrication forces up to the limit

of the grid size, and no explicit lubrication correction (e.g. see Nguyen & Ladd44) is added

to the force balance to capture the unresolved sub-grid effects.

III. NUMERICAL METHODS

To solve the equations of motion of the fluid and particle phase, we use a finite volume

version of PeliGRIFF, a numerical simulation tool that makes use of distributed Lagrange

9



multiplier and fictitious domain techniques, as described in detail by Wachs35. The numerical

aspects and validations of this code have been discussed in many other publications35,36,45–47.

To capture the Stokes behaviour of the suspensions, as well as the transition to inertial

regimes, we perform a series of simulations at Rep = 0.002, 0.02, 0.2, 2, and 20. For each

of these particle Reynolds numbers, volume fractions of φ = 0.05, 0.1, 0.2, 0.3 and 0.38 are

considered. These simulations are performed in a box with Lx = Ly = Lz = H = 10D.

According to the simulations of Yeo & Maxey23 and Fornari et al.24 this domain height is

sufficient for particle layering near walls not to influence the bulk stresses. To resolve the

diameter of each particle, 24 points are used, with the total domain mesh size being 2403.

For high Reynolds numbers and volume fractions, we have tested the sensitivity of the results

to the mesh size. For Rep = 20 and φ = 0.38, using 32 points per diameter, the average

shear stress on the walls was within 7% of its value using 24 points.

The simulations are advanced in time until a statistically steady state is reached in

terms of the macroscopic behaviour of the suspension, e.g. as measured by the mean shear

stress exerted on the walls. The time of the simulation required to reach a statistically

steady state varied between 10 times the inverse of the shear rate, γ̇, for Rep = 0.002 and

φ = 0.05 to 50 times the inverse of the shear rate for Rep = 20 and φ = 0.38, e.g. see

figure 3. Our large-scale Reynolds numbers (defined based on the flow height), are smaller

than the critical Reynolds number for the occurrence of secondary flows or transition to

turbulence48–52. Therefore, we do not expect any large-scale velocity fluctuations to develop

due to hydrodynamic instabilities. Based on experimental measurements in pipe flows,

Matas et al.53 showed that due to the presence of particles, the critical Reynolds number

for transitionto turbulence can either increase or decrease depending on the ratio of pipe

diameter to particle size and the volume fraction of solid particles. However, here we did

not find any particle induced transitional behaviour as our large-scale Reynolds numbers

are small. The range of large-scale Reynolds numbers we consider here are well below the

critical Reynolds numbers for the transition to turbulence found by Linares et al.33 in coaxial

Couette flow experiments.

The dimensional time step of the fluid solver in all simulations is less than 0.0005γ̇−1.

This time step is small enough to ensure the inertial and viscous time scales of the flow are

well resolved. The time step for solving the motion of particles is at least 15 times smaller

than the physical contact time of the spheres.
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IV. STRESSES IN THE SUSPENSION

A. macroscopic shear stresses

One of the main objectives of studying suspension flows is to characterize the macroscopic

and microscopic stresses in the flow to describe the rheological behaviour of the suspensions.

A measure of the macroscopic shear stresses of the suspension is the effective viscosity

obtained by non-dimensionalizing the mean shear stress on the walls by µγ̇, the viscous shear

stress on walls without the particle effects. The time evolution of the effective viscosity of

the suspension for Rep = 20 and different volume fractions, is presented in figure 3. This

figure shows that in our simulations the wall shear stress starts from zero, in an initial

state in which the fluid and particle velocities are set to 2(z − H/2)U , and evolves to a

statistically steady state, where the micro-structure features of the flow are fully developed

but still evolving in time. In this steady state, the mean shear stresses fluctuate about

a mean value as the interaction of particles through collisions and hydrodynamic forces

continuously modifies the microstructure of the suspension. These fluctuations are much

more pronounced at higher volume fractions due to the stronger interaction of particles.

The dimensionless time required to reach a steady state is less than 100, as reported by

Drazer et al.54. The horizontally averaged streamwise fluid velocity and volume fraction,

also time averaged over the statistically steady state period, are presented in figure 4. The

averaged velocity profiles are close to the initial shear profile for all cases, with a small

deviation observed at φ = 0.38. The averaged volume fraction profile however exhibits

strong fluctuations, especially at φ = 0.38. These fluctuations are caused by the random

initial positioning of the particles and the fact that their net deviation from these initial

positions is small over time. At φ = 0.38, the concentration of particles close to the walls

is on average higher than that at the center of the Couette gap, which is an indication of

layering of particle close to the solid walls. The particle resolved simulations of Gallier et

al.43 revealed a similar profile of the local concentration of particles at φ = 0.4.

The dimensionless shear stress on the walls (or the effective viscosity), time-averaged

in the statistically steady state, as a function of the volume fraction is shown in figure 5

for different particle Reynolds numbers. Our numerical effective viscosity are compared

to the correlations between the effective viscosity and the volume fraction proposed by e.g.

11



0 10 20 30 40 50 60 70
tγ̇

2

3

4

5

6

7

τ
w x
y
/(
µ
γ̇
)

φ = 0.05
φ = 0.1

φ = 0.2

φ = 0.3

φ = 0.38

FIG. 3. Time evolution of the mean shear stress on the wall, τwxy, non-dimensionalized by µγ̇ (which

gives the effective viscosity) for different volume fractions: φ = 0.05, 0.1, 0.2, 0.3, and 0.38 at Rep

= 20.

FIG. 4. Horizontally and time averaged streamwise component of (a) fluid velocity and (b) particle

volume fraction as a function of the vertical location in the Couette flow. The dependence of these

plots on the Reynolds number was negligible.

Eilers55, Krieger-Dougherty2, and Boyer et al.4 (their equation (8)), all for Rep ∼ 0. In these

comparisons we have assumed a maximum packing volume fraction of 0.63, and an intrinsic

viscosity of 2.5 in Krieger-Dougherty and Eilers correlations and a maximum packing volume

fraction of 0.63 when using Boyer et al.’s correlation. For these assumed values, our results

show a good agreement with the empirical correlations of Eilers, Krieger-Dougherty, and
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Boyer et al. for particle Reynolds numbers up to Rep = 2. For our highest particle Reynolds

number of Rep = 20, the wall shear stress exhibits a significant increase above the assumed

empirical correlations. The abrupt increase in τwxy at Rep = 20 follows a monotonic increase

of the wall shear stress with the Reynolds number. Figure 5 suggests that the bulk shear

stress goes through a transition as the Reynolds number increases to Rep = 20.

The effect of particle Reynolds number on the effective viscosity of suspensions has been

previously examined in Couette flows. Kulkarni & Morris27 observed a particle Reynolds

number effect only at φ = 0.3, the highest volume fraction they simulated. Their com-

puted effective viscosity increased at higher particle Reynolds numbers (Rep = 1 was their

maximum particle Reynolds number), while the effect was non-monotonic for lower particle

Reynolds numbers. Picano et al.25 obtained a monotonic increase in the effective viscosity

when increasing Rep from 1 to 5, with this effect being more pronounced at higher particle

volume fractions. Our results are in agreement with these finding of Picano et a.25, for a

larger range of particle Reynolds numbers. For a suspension of particles in a coaxial Couette

flow and over a wide wide range of 3 < Rep < 100, Linares et al.33 measured a monotonic

increase of the effective viscosity with particle Reynolds number, but only for φ ≤ 0.3. For

higher volume fractions, the effective viscosity revealed either a non-monotonic behaviour

or a decreasing trend with increasing Rep. Our simulations with φ > 0.3 clearly do not

agree with this finding of Lineras et al.33, and for φ < 0.3 our simulations show a slower

increase in the effective viscosity with increasing Rep compared to their measurement. The

former finding is in agreement with the simulations of Picano et al.25. Our computed values

of effective viscosity are in general lower than those obtained in numerical simulations by

Kulkarni & Morris27 and Picano et al.25, while they are closer to values computed by Yeo &

and Maxey23.

The increase in shear stress in suspensions at higher Reynolds numbers has been at-

tributed to the development of shadow region in case of inertial particles in viscous flow

regimes by Picano et al.25 and increase in Reynolds stresses in turbulent flow regimes with

large velocity fluctuations by Lashgari et al.28,29. Numerical simulations of Mikulencak &

Morris56 for a stationary sphere in a shear flow indicated that inertial effects enhance the

contributions of the particle to the total shear stress of the suspension. Patankar & Hu57,

using numerical simulations of two-dimensional circular particles in a shear flow, pointed out

that the reduction in the angular velocity of particles, that occurs evidently for Rep > 156,
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FIG. 5. Variation of the effective viscosity of the suspension, time average of the mean shear

stress on walls, < τwxy >t, divided by µγ̇, with the volume fraction for different particle Reynolds

numbers. The dashed line delineates the empirical correlation of Eilers55, the dashed-dotted line

the correlation of Krieger-Dougherty2, and the dotted line, the correlation of Boyer et al.4.

contributes to higher velocity gradients between particles and wall and therefore larger shear

stresses. In the limit of high Reynolds numbers, Rep > 100, and relatively low volume frac-

tions, φ < 0.3, Linares at al.33 discuss that high fluid velocity fluctuations and a transition

to turbulence result in higher effective viscosity. We examine the importance of particle and

fluid inertia in momentum balance at higher Reynolds numbers in section V, and the signif-

icance of Reynolds stresses and reduction in particle rotation at higher Reynolds numbers

in section VI.

B. microscopic shear and normal stresses

It is established in the literature that the macroscopic behaviour of the suspension is

highly dependent on its microscopic features, e.g. see19,26,58 among other studies. At the

microscopic level, to distinguish between fluid and particle contributions to the stresses,

conventionally the whole suspension stresses are split into fluid and solid parts as7

σ = (1− χ)σf + χσp, (12)
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where χ is the phase indicator, with χ = 0 in the fluid phase and χ = 1 in the solid phase.

The fluid phase stress tensor is σf = −P I + 2µe, and σp denotes the stress tensor in the

particle phase.

The microstructure of the fluid phase stresses, for an instantaneous snapshot, is shown

in figure 6 for the shear stress, τ fxy, and in figure 7 for the deviatoric part of the normal

stress, σf
yy. These figures show that the local shear and normal stresses can be significantly

larger than the bulk shear stress, µγ̇. Particularly in the gaps between the particles and

particles and walls, where the hydrodynamic interactions between the particles and particles

and walls strain and pressurize the fluid and the stresses exhibit high local values. These

high local shear and normal stresses are larger in magnitude and size of regions of occurrence

when the volume fraction increases from φ = 0.05 to φ = 0.38. By increasing the particle

Reynolds number from Rep = 0.02 to Rep = 20, the regions of high concentration of stresses

increase slightly in area in the fluid phase. However, this change is much less significant

compared to the effects of increasing the volume fraction of particles.

In figure 6, in regions of the fluid phase between the particles, where the distance between

two particles is of order of one particle size, the fluid experiences zero or smaller than µγ̇

shear stresses. This effect is particularly pronounced in the wakes behind the particles. Local

normal stresses in the fluid phase in figure 7 can also vary over a wide range depending on the

location and local concentration of particles. This variation in local τ fxy/(µγ̇) and σf
yy/(µγ̇)

is examined in PDFs of the stresses in the fluid phase in figure 8. As the volume fraction

increases from 0.05 to 0.38, the variance of PDFs significantly increases due to enhanced

particle/particle interactions. The same trend has been observed in the PDFs of the shear

rate by Alghalibi et al.59. The mean of the fluid phase shear stress PDF moves toward higher

values at φ = 0.38, with a longer tail at larger values of τ fxy/(µγ̇) as the straining of the

fluid in the gaps between the particles becomes more dominant. The PDFs of the normal

stresses, σf
yy/(µγ̇), also spreads out over a larger range at φ = 0.38 compared to the PDFs

at φ = 0.05. However, they exhibit a fairly symmetric distribution with respect to the mean

value of zero for both volume fractions.

By increasing the Reynolds number from Rep = 0.02 to Rep = 20, the PDFs become only

slightly broader for both volume fractions. The shear rate PDFs of Alghalibi et al.59 also did

not reveal a significant dependence on the particle Reynolds number for Rep = 0.1 and 6.

The PDFs of the shear stress are more biased toward τ fxy/(µγ̇) < 1 at Rep = 20 compared to
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FIG. 6. Snapshots of the instantaneous micro-structure of the shear stress in the fluid phase,

τ fxy/(µγ̇), at a time in the statistically steady state. Each snapshots shows a slice at z = Lz/2, for

Rep = 0.02, panels (a) and (b), and Rep = 20, panels (c) and (d). In each row the left panels (a)

and (c) corresponds to a low volume fraction: φ = 0.05, and the right panel (b) and (d) correspond

to a higher volume fraction: φ = 0.38. The stresses inside the solid particles are shown as zero.

those at Rep = 0.02. This indicates that due to the inertial effects the wake regions in the

fluid, where shear stresses drop to values below the bulk shear, expand. The PDFs of the

normal stresses at higher Reynolds numbers become distributed over a slightly wider range

in a symmetric way, favouring more both negative and positive larger normal stresses.

Horizontally averaged shear stresses in the fluid phase, τ fxy, for the same flows shown

in figure 6 are presented in figures 9 for φ = 0.05 and 0.38, and Rep = 0.2 and 20. This

figure shows that in the bulk of the suspension, and away from the walls, the contribution

of the fluid phase to the total shear stresses is only τ fxy/(µγ̇) = 1.04 for φ = 0.05, and

τ fxy/(µγ̇) = 1.4 for φ = 0.38, regardless of the particle Reynolds number. This increase in
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FIG. 7. Snapshots of the instantaneous micro-structure of the deviatoric part of the normal stress

in the fluid phase, σfyy/(µγ̇), at a time in the statistically steady state. Each snapshots shows a

slice at z = Lz/2, for Rep = 0.02, panels (a) and (b), and Rep = 20, panels (c) and (d). In each row

the left panels (a) and (c) corresponds to a low volume fraction: φ = 0.05, and the right panels (b)

and (d) correspond to a higher volume fraction: φ = 0.38. The stresses inside the solid particles

are shown as zero.

τ fxy is marginally higher than the bulk background shear stress. Near the walls, where the

solid volume fraction goes to zero, the fluid shear stress abruptly increases to values close

to the computed time averaged wall shear stress. This rapid change in τ fxy occurs over a one

particle diameter length scale and is similar to the sharp increase in the viscous stresses near

the wall in simulations of Lashgari et al.28 in a channel flow with high Reynolds numbers

or high particle volume fractions. In a fluid layer very close to the walls the shear stress

in the fluid phase represents the entire suspension’s shear stress as χ = 0 and τxy = τ fxy.

The wall shear stress in all cases, and especially for high volume fractions, is considerably
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FIG. 8. Probability density functions of the local shear and normal stresses in the fluid phase: (a)

τ fxy/(µγ̇) and (b) σfyy/(µγ̇).

higher than the average shear stress from the fluid phase contribution in the middle of

the domain. The difference is the contribution of the solid phase, τ pxy, that includes the

stresslet, particle acceleration stresses and particle Reynolds stresses7,26. Similar to this

finding, Shakib-Manesh et al.60 showed that in their PRS of circular particles in a Couette

flow, the increased shear stress at higher Reynolds numbers was due to enhanced particle

shear stress.

Figure 9 delineates that τ pxy (the difference between the shear stress on the walls and the

fluid shear stress in the middle of the domain shown by the vertical dashed line) increases

with increasing φ and Rep. While at higher φ the stronger particle/particle and particle/wall

interactions lead to larger contributions from the stresslet to the shear stress7,61, at higher

Rep it is expected that the acceleration and Reynolds stresses also contribute significantly

to the particle shear stress28,60. To gain more insight into the significance of particle and

fluid inertia in comparison to particle/particle interactions, we will examine the momentum

balance for particle and fluid phase in section 5. The other potential reasons for higher par-

ticle shear stress at higher Reynolds numbers, larger Reynolds stresses and reduced particle

rotation, will be investigated in section 6.
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FIG. 9. The fluid phase horizontally averaged shear stress, τ fxy, for Rep = 0.02, panels (a) and (b),

and Rep = 20, panels (c) and (d), and φ = 0.05, left panels (a) and (c), and φ = 0.38, right panels

(b) and (d). The dashed lines show the average shear stresses within the suspension, i.e. averaged

from y = D to y = Lz −D. The dots indicate the time averaged shear stress on the walls.

V. MOMENTUM BALANCE ANALYSIS

The momentum balance of the suspension is described by Cauchy’s equation of motion

∇.σ + b = ρ
Du

Dt
. (13)

A continuum volume-averaged model of equation 13 for Stokes regimes is given by the

suspension balance model (SBM)7,11. SBM describes closures for the balance of mass and

momentum for solid and fluid phases, and also the whole suspension. It should also be noted

that SBM’s continuity ensemble equation, stated as ∇.u = 0, is inherent in our fictitious

domain formulation, e.g. see35, which makes the discussion of mass conservation trivial here.
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By volume averaging equation 13, in this section we focus on the significance of each term

in the force balance in different regimes.

By multiplying equation 13 by the phase indicator χ and averaging over the entire domain,

the momentum balance for the particle phase is obtained7

∇. 〈χσp〉+ np 〈F 〉p + 〈b〉p = npρ

〈
Du

Dt

〉p

. (14)

In the equation above, the first term on the right hand side is the divergence of volume av-

eraged stresses in the particle phase, np 〈F 〉p is the volume averaged sum of hydrodynamic

particle forces, and 〈b〉p represents the contributions from particle contact forces per vol-

ume. The term on the right hand side is the volume averaged sum of particles acceleration.

Similarly, the fluid phase momentum balance can be written as

∇.
〈
(1− χ)σf

〉
− np 〈F 〉p + 〈b〉f = ρ

〈
Du

Dt

〉f

, (15)

where the first term is the divergence of the volume averaged stresses in the fluid phase, 〈b〉f

is the contribution of the particle contacts to the forces in the fluid phase, and ρ
〈
Du

Dt

〉f

is the inertial force due to the acceleration of the fluid phase. The volume averaged sum of

hydrodynamic forces on particles represents the momentum exchange between the particle

and fluid phase.

First, we consider the instantaneous fluid phase momentum balance as stated in equation

(15). In the Stokes flow regime, the fluid phase inertia can be neglected. In our particle

resolved simulations the forces in the fluid phase due to particle contacts are already captured

as part of the divergence of the fluid phase stresses. Moreover, an exact evaluation of this

term is not feasible. Therefore, we did not include 〈b〉f explicitly. This reduces equation 15,

in the limit of low Rep, to simply

∇.
〈
(1− χ)σf

〉
= np 〈F 〉p . (16)

This equation states that the average of divergence of the stresses in the fluid phase is equal

to the average of the interphase forces on the particles surface, and has also been previously

derived in a similar form by Lhuilier9 and Dbouk et al.62. Upon applying the divergence

theorem, making use of the periodicity of the boundaries in x and z directions and assuming

that at the top and bottom walls χ = 0 everywhere (particle contact area with the wall is

20



negligible), equation 16 simply gives the following force balance in three directions

(np 〈Fx〉p , np 〈Fy〉p , np 〈Fz〉p) =
1

H
(∆τwxy,∆σ

w
yy,∆τ

w
zy). (17)

In the equation above ∆ denotes the difference between stresses on the top and bottom

walls.

The force balance in equation (17) is examined in figure 10 for the lowest and highest

volume fraction simulations, i.e. φ = 0.05 and 0.38, at Reynolds numbers Rep = 2, and 20.

In this figure, the instantaneous volume averaged sums of the hydrodynamic forces on all

particles, np 〈F 〉p, are presented in all three directions. The volume average of the divergence

of the fluid phase stresses are shown for comparison, however only at a few times due to the

noisy nature of the data. All terms have been non-dimensionalized by the shearing force

scale: Fshear = µγ̇A, with A being the surface area of the top (or bottom) wall.

Figure 10 shows that at φ = 0.05 and Rep = 0.02 the net particle hydrodynamic forces

are very small compared to the shear force as the flow around each particle is close to

being perfectly symmetric at this low Reynolds number and particle concentration. At

φ = 0.38, however, the net particle hydrodynamic forces fluctuate with larger amplitudes,

particularly in the y direction due to the interactions between particles and particles and

walls. Intermittent spikes in the forces occur due to the particle/particle and particle/wall

contacts. At φ = 0.05 and Rep = 20, the sum of particle hydrodynamic forces exhibits

high frequency fluctuations while its amplitude remains relatively small. For all these three

cases, we get a close match between the instantaneous n 〈F p〉 and ∇.
〈
(1− χ)σf

〉
in all

three directions.

The only simulation in figure 10 for which equation (17) does not provide a closed mo-

mentum balance is the flow with φ = 0.38 and Rep = 20. For this case, the amplitude

of fluctuations in the sum of particle hydrodynamic forces is significantly larger than the

background shear force and the frequency of fluctuations is higher than that at Rep = 0.02

and the same φ. The inertia at this high volume fraction enhances the long-range hydro-

dynamic forces acting between the particles and contacts between the particles and particle

and walls. The hydrodynamic forces exhibit a very intermittent nature where the sums of

the hydrodynamic forces on particles spike to high values over a short time period and then

remain relatively small in other time intervals. This is clearly different from the slower and

more periodic nature of fluctuations of n 〈F p〉 at φ = 0.4 and Rep = 0.02. While the mag-
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FIG. 10. Instantaneous fluid phase momentum balances over a 4 dimensionless time unit span for

Rep = 0.02, the top panels (a) and (b), and Rep = 20, the bottom panels (c) and (d). The left

panels (a) and (c) show φ = 0.05 and the right panels (b) and (d) show φ = 0.38. The lines indicate

the sum of hydrodynamic forces on particles, and the dots the divergence of stresses in the fluid

phase, non-dimensionalized by the bulk shear force.

nitude of the fluctuations in the volume averaged sum of particle hydrodynamic forces at

φ = 0.4 and Rep = 20 are nearly matched with the instantaneous average of the divergence

of the stresses in the fluid phase, the fluid inertia term is still needed for this case to close

the momentum balance.

Now, we turn our attention to the particle phase momentum balance, as stated in equa-

tion (14). Since χ = 0 on the top and bottom wall, the application of the divergence theorem

to equation (14) makes the term ∇. 〈χσp〉 vanish. Therefore, the momentum balance is be-

tween the other three terms in equation (14). Since computing the exact contributions of the
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particle/particle and particle/wall contacts to the stresses of the particle phase, i.e. 〈b〉p, is

not straightforward, we examine the balance between terms np 〈F 〉p and npρ

〈
Du

Dt

〉p

here

and attribute the difference to 〈b〉p. Figures 11, 12 and 13 compare the balance between

these two terms in directions x, y and z, respectively, by examining the probability density

function (PDF) of their instantaneous values over a sufficiently large time span in the sta-

tistically steady state. As both terms np 〈F 〉p and npρ

〈
Du

Dt

〉p

fluctuate rapidly in time,

their instantaneous comparison cannot be interpreted in a meaningful way. On the other

hand, comparing their PDFs provides a means to examine their balance statistically.

FIG. 11. The probability density function of the instantaneous volume averaged sum of hydrody-

namic forces on particles, np 〈F 〉p, and particle phase inertia npρ
〈
Du

Dt

〉p

in the streamwise (x)

direction, normalized by the shear force scale, Fshear. The top panels (a) and (b) show Rep = 0.02,

and the bottom panels (c) and (d) show Rep = 20. The left panels (a) and (c) show φ = 0.05 and

the right panels (b) and (d) φ = 0.38.
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FIG. 12. The probability density function of the instantaneous volume averaged sum of hydro-

dynamic forces on particles, np 〈F 〉p, and particle phase inertia npρ

〈
Du

Dt

〉p

in the vertical (y)

direction, normalized by the shear force scale, Fshear. The top panels (a) and (b) show Rep = 0.02,

and the bottom panels (c) and (d) Rep = 20. The left panels (a) and (c) show φ = 0.05 and the

right panels (b) and (d) show φ = 0.38.

In the streamwise (x) direction, there is a close match between the PDFs of np 〈F 〉p and

npρ

〈
Du

Dt

〉p

for the Rep = 20 and φ = 0.38 case. This indicates that for this high particle

volume fraction and Reynolds number the sum of the streamwise hydrodynamic forces on

the particles captures the entire forces on particles and is balanced by the sum of the particle

acceleration forces. Therefore, the contributions from the contacts are already accounted for

in the hydrodynamic force part. This is because the enhanced particle/particle interactions

lead to short-lived contact forces acting on particles that directly transfer into higher in-

stantaneous particle accelerations. So the term 〈b〉p is negligible in the particle momentum
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FIG. 13. The probability density function of the instantaneous volume averaged sum of hydro-

dynamic forces on particles, np 〈F 〉p, and particle phase inertia npρ
〈
Du

Dt

〉p

in the spanwise (z)

direction, normalized by the shear force scale, Fshear. The top panels (a) and (b) show Rep = 0.02,

and the bottom panels (c) and (d) show Rep = 20. The left panels (a) and (c) show φ = 0.05 and

the right panels (b) and (d) show φ = 0.38.

balance. The variances of the PDFs of the np 〈F 〉p and npρ

〈
Du

Dt

〉p

are significantly higher

for this case compared to low Reynolds number or low volume fraction cases. For the other

three cases shown in figure 11, however, the variation in npρ

〈
Du

Dt

〉p

is smaller than that

in np 〈F 〉p and the effects of contacts as measured in term 〈b〉p are required to close the

particle momentum balance. For these cases the contact forces do not instantaneously lead

to enhanced particle acceleration and are partly balanced by particle hydrodynamic forces.

In the vertical (y) direction, at φ = 0.05, the PDFs of np 〈F 〉p and npρ

〈
Du

Dt

〉p

change

only slightly compared to those in the streamwise direction. At φ = 0.38, however, due to
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φ = 0.05 φ = 0.38

Rep = 0.02 ∇.
〈
(1− χ)σf

〉
− np 〈F 〉p = 0 (1) (1)

np 〈F 〉p + 〈b〉p = npρ

〈
Du

Dt

〉p

(2) (2)

Rep = 20 (1) ∇.
〈
(1− χ)σf

〉
− np 〈F 〉p = ρ

〈
Du

Dt

〉f

(3)

(2) np 〈F 〉p = npρ

〈
Du

Dt

〉p

(4)

TABLE I. Summary of approximations for momentum balance equations in the fluid and particle

phase for different flow regimes. Equation (4) is valid only in the streamwise and spanwise directions,

in the vertical direction equation (2) should be used instead.

the wall effects on particles, the variation in PDFs of np 〈F 〉p increase dramatically, while

the variation in PDFs of npρ

〈
Du

Dt

〉p

increase to a lesser extent. Particularly at Rep = 0.02

and φ = 0.38, the contributions of the contact forces in 〈b〉p are significant in closing the

momentum balance in the y direction. At Rep = 20 and φ = 0.38, also the term 〈b〉p is

necessary to close the balance in the y direction.

In the spanwise (z) direction, similar to the other directions the variance in PDFs of

np 〈F 〉p and npρ

〈
Du

Dt

〉p

increases by increasing either φ or Rep, while increasing φ and Rep

simultaneously has a much more pronounced effect. In this direction a good balance holds

between the terms np 〈F 〉p and npρ

〈
Du

Dt

〉p

and therefore, 〈b〉p is negligible.

To summarize the findings in figures 11, 12 and 13, we present the approximate fluid

and particle momentum balance equations in table I. This table shows that in both low

volume fraction and low Reynolds number regimes the fluid inertia can be neglected in the

balance, while the inter-particle contact forces are non-negligible, even at φ = 0.05. At the

high Reynolds number and volume fraction regime both fluid and particle inertia terms are

important and their sum balances the gradients in the fluid stresses (except in the vertical

direction). The inter-particle contact forces transfer into particle inertia rapidly and can be

neglected as a distinct term (except in the vertical direction).
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VI. KINEMATICS OF PARTICLES

A. Particle velocity fluctuations

We examine the magnitude of time averaged particle velocity fluctuations in all three

directions, x, y, and z, as a function of y in figure 14. The magnitude of particle velocity

fluctuation in x, y and z directions are the root mean square of the instantaneous velocity

fluctuations, defined, respectively, as

u′p =

(〈(
up − 2

(
zp − H

2

)
U

)2
〉

t

)1/2

, v′p =
(〈

(vp)2
〉
t

)1/2
, w′p =

(〈
(wp)2

〉
t

)1/2
, (18)

where 〈〉t denotes temporal averaging for each particle. In equations (18), each component of

particle velocity fluctuation is defined based on the difference between the particle velocity

and the local undisturbed fluid velocity. These velocity fluctuation measures bear similarity

with the granular temperature, T , defined as T = 〈(up − 〈up〉t).(up − 〈up〉t)〉t /3, e.g. see

Wylie et al.63, which is a measure of the kinetic energy of particles due to their velocity

fluctuations. However, here we are more interested in the magnitude of each component

of velocity fluctuations rather than the rms of all components as defined in the granular

temperature.

Figure 14 shows that the amplitude of particle velocity fluctuations in the streamwise

(shear) direction is larger than those in the other two directions. Velocity fluctuations in the

vertical direction also exhibit larger amplitudes compared to the spanwise direction. These

indicate that the particle velocity fluctuations are not isotropic in three directions as shearing

and wall effects favour velocity fluctuations. As φ increases and the particle interactions are

enhanced, the particle velocity fluctuations increase in amplitude in all three directions.

Additionally, by increasing φ, the vertical direction dependence of u′p significantly changes

and its maximum shifts toward the center at φ = 0.38. The reason is that at higher φ the role

of interaction of particles with each other in inducing streamwise direction particle velocity

fluctuations becomes comparable to the effects of the interaction of particles with walls. By

increasing Rep, u′p, v′p and w′p become more uniform over the depth of the domain as the

effects of inertia in inducing velocity fluctuations become comparable to particle/particle and

particle/wall interaction effects. However, the dependence of the amplitude of the velocity

fluctuations on Rep is not monotonic and much weaker than the dependence on φ.

27



FIG. 14. Dependence of the time-averaged magnitude of particle velocity fluctuations, u′p, v′p and

w′p, normalized by U , on the time-averaged vertical particle location. The colors show the particle

velocity fluctuations in: the streamwise direction (blue), vertical direction (red), and spanwise

direction (green). The top panels (a), (b) and (c) show Rep = 0.02 and the bottom panels (d), (e)

and (f) show Rep = 20. The left panels (a) and (d) correspond to φ = 0.05, the middle panels (b)

and (e) show φ = 0.2 and the right panels (c) and (f) show φ = 0.38.

The velocity fluctuations v′p and w′p are less than 0.02U over the entire depth of the

gap. Therefore, the contribution of Reynolds stresses to the bulk shear stress is negligible

in all our simulations. These velocity fluctuation amplitudes fall into the "laminarlike" (low

volume fraction and low inertia) or the "inertial shear-thickening" (high volume fraction and

presence of inertia at particle scale) regimes of velocity fluctuations classified by Lashgari

et al.28 in a channel flow. They also concluded that in these regimes the contribution

of Reynolds stresses to total wall shear stress is small. While particle accelerations are

significantly higher at Rep = 20 compared to those at Rep = 0.02 (see figures 11 to 13 ), time

averaged particle velocity fluctuations are not necessarily higher at Rep = 20. This is due to

the highly intermittent nature of particle accelerations and forces at high particle Reynolds
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numbers (see figure 10 ) that can generate high velocity fluctuations over a short period of

time, but the time averaged velocity fluctuations are smoothed out to values comparable to

those at low Reynolds numbers. However, since the Stokes number of particles are small

in all our simulations (with the Stokes number being St = Rep/18) we do not expect any

transition to highly collisional regimes, in a sense of "agitated regimes" as described by Tsao

& Koch64, Sangani et al.65 and Parmentier & Simonin66, or a significant increase in velocity

fluctuations by increasing the Reynolds number as found by Abbas et al.67.

It is noteworthy that we found the fluid phase velocity fluctuations to have a very similar

behaviour to the particle velocity fluctuations. We did not find any transition to turbulence,

as described by Linares et al.33 in their laboratory experiments, in any of our simulations.

Therefore, at high Reynolds numbers, while our particles become inertial through experi-

encing high accelerations, the fluid remains laminar.

B. Particle rotation

The rotational kinetic energy of the particles serves as a measure of the interaction of

particles with each other and with the fluid phase. The reduction in particle rotation at

higher Reynolds numbers in shear direction, Ωz, has been linked to the increase in the

shear stress of the suspension57. Figure 15 shows the rotational velocities in all directions

(root of time-averaged squares of rotational velocities). This figure shows that Ωx, and Ωy,

rotational velocities caused by the particle collisions and particle hydrodynamic interactions,

increase by increasing φ, as was also observed by Drazer et al.54. Increasing Rep from 0.002

to 2 had a slight increasing effect on the average Ωx and Ωy (data not shown here). At

Rep = 20, however, the average particle rotations in x and y directions are suppressed at

high volume fractions where the particle interactions are strong. Increasing the Reynolds

number results in a more uniform distribution of particle rotational velocities across the

depth of the gap. The particle rotation in z direction, mainly caused by the background

shear and rolling of particles, is about 0.5γ̇, in agreement with previous studies54,56. For all

particle Reynolds numbers, following a monotonic increase with increasing φ, the average

Ωz diminished at φ = 0.38 due to the suppression of free particle rolling at this high volume

fraction. Similarly, the increase in Rep has an enhancing effect on Ωz up to Rep = 2 (not

all data shown here). At Rep = 20, the shear induced particle rotations are suppressed by
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FIG. 15. Dependence of the time-averaged particle rotational velocity on the time-averaged vertical

particle location. The colors show the particle velocity fluctuations in: the streamwise direction Ωx

(blue), vertical direction Ωy (red), and spanwise direction Ωz (green). The top row shows Rep = 0.02

and the bottom row shows Rep = 20. The left panels (a) and (d) correspond to φ = 0.05, the middle

panels (b) and (e) show φ = 0.2 and the right panels (c) and (f) show φ = 0.38.

enhanced particle interactions. For instance, for φ = 0.38, the average Ωz decreases from

0.51 to 0.46 when Rep increases from 2 to 20. This drop in Ωz is close to the values reported

by Mikulencak & Morris56 from a collection of previous studies. According to Patankar &

Hu’s57 analysis, this reduction in Ωz can contribute to higher wall shear stresses at higher

Reynolds numbers.

C. Particle diffusion

Shear and particle interaction induced diffusion of particles in suspensions have been

studied extensively previously12,13,31,68 and attributed to the asymmetric and anisotropic

stresses around the particles. Since in our Couette flow simulations the shear rate is constant,
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the diffusion of the particles is solely due to the interaction of particles.

Figure 16 presents the trajectories of the transverse motion of all particles with respect to

their initial position in time. This figure delineates the diffusive nature of the particle motion

in the transverse direction. The envelope of particle trajectories suggest that at the low

volume fraction, φ = 0.05, particles are almost similarly diffusive in z and y directions. At the

high volume fraction, φ = 0.38, some particles are clearly more diffusive in the y directions,

where wall confinement induces higher particle/particle interactions. By comparing the

envelope of particle trajectories, it can be estimated that the particles are approximately

2 to 3 times more diffusive at φ = 0.38 as opposed to at φ = 0.05, with diffusivity being

measured as Dy = ∆y2/(tD2γ̇) and Dz = ∆z2/(tD2γ̇). The insets in figure 16 show that

the diffusion coefficients Dz and Dy reach a plateau after some time, where their values are

statistically steay. This is the stage where particle motions reach a diffusive regime.

The diffusion coefficients, averaged over all particles initially positioned at 2 < y/D < 8

in the domain and averaged over the time interval in the diffusive mode, denoted by Dyy

and Dzz, are shown as a function φ for different Reynolds numbers in figure 17. This

averaging excludes the particles that are initially located close to walls and therefore have

lower diffusion coefficients due to wall effects. Also, in this figure we show comparisons to

previous experimental measurements and numerical simulations of the diffusion coefficients

in the vertical or shear direction (Dyy), and in the spanwise or vorticity direction (Dzz). To

make our computation of the diffusion coefficients comparable with these previous studies,

we have normalized the dimensional diffusion coefficients by γ̇(D/2)2, i.e. now we are using

the particle radius instead of particle diameter.

In general Dyy and Dzz have an increasing trend with increasing φ. However, at higher

volume fractions this trend becomes occasionally non-monotonic, as also observed in previous

studies69,70. The particle Reynolds number does not have a distinctive effect on the averaged

diffusion coefficients for 0.002 < Rep < 2. At lower Reynolds numbers (i.e. Rep ≤ 2), our

diffusion coefficients are closer to the experimental measurements of Leighton & Acrivos12

and Breedveld et al.69,71 and numerical simulations of Abbas et al.32, while they are signifi-

cantly higher than the Stokesian dynamics simulations of Marchioto & Acrivos13 and Sierou

& Brady70. The Stokesian dynamics simulations, that make use of very small Reynolds

number assumption, are known to give lower diffusion coefficients69. At lower volume frac-

tions, in general our diffusion coefficients are higher than the quantifications in previous
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studies. We conjecture that this difference might either fall within the error bars in the

previous experimental measurements, or be caused by the low number of particles available

for averaging in our and other numerical simulations. For most cases, particles are more

diffusive in the vertical direction compared to the streamwise direction, in agreement with

the previous estimations of the particle diffusion coefficients in both directions.

At Rep = 20, the diffusion coefficients exhibit significantly higher values compared to

lower Reynolds numbers and also compared to previous quantifications of diffusion coeffi-

cients at zero of finite Reynolds numbers. We attribute this transition at Rep = 20 to high

spikes in particle acceleration (see figures 11, 12 and 13) that result in high intermittent

velocity fluctuations and consequently large particle displacements in one direction rather

than the oscillatory motion of particles at lower Reynolds numbers. It is noteworthy that the

maximum transverse displacement of the particles in the duration of our simulations is 4D.

This is less than half height of the domain and so our diffusion coefficients do not reflect the

effects of confined domain height on averaged particle diffusion. Simulations should be run

for a longer time to gain more insight into confinement effects. However, this investigation

is beyond the scope of the present study.

VII. CONCLUSIONS

We have studied the suspension of spherical particles in a plane Couette flow using a

Lagrange multiplier/ fictitious domain method, for particle volume fractions 0.05 < φ < 0.38

and particle Reynolds numbers 0.002 < Rep < 20.

At the macroscopic level, our wall shear stress, presented in terms of the effective viscosity,

was in a good agreement with previous empirical correlations for the effective viscosity

as a function of particle volume fraction. At Rep = 20, the effective viscosity increased

significantly compared to the lower particle Reynolds numbers due to an abrupt increase in

the particle phase shear stress. At the microscopic level, the local shear and normal stresses

in the fluid phase exhibited a much wider variation at higher particle volume fractions owing

to the local shearing or compressing of the fluid in the small gaps between the particles or

the low shear rate and low pressure regions in the wakes of particles. The increase in the

particle Reynolds number caused only a small increase in the variation of local shear and

normal stresses in the fluid phase.
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FIG. 16. Trajectories of particle motion compared to their initial position for Rep = 20. The

left panels (a) and (c) delineate φ = 0.05 and the right panels (b) and (d) correspond to 0.38.

The insets show the time evolution of the diffusion coefficients, (∆y)2/(D2tγ̇) and (∆z)2/(D2tγ̇),

averaged over all particles.

To gain more insight into the nature of the transitional behaviour at Rep = 20, we

examined the instantaneous Cauchy momentum balance equation for each phase for the

bulk of the suspension for four different regimes with low to high particle volume fractions

and particle Reynolds numbers. Our analysis revealed that in the limit of large φ and

Rep the momentum balance is distinctly different form other regimes due to particle inertia

and enhanced particle interactions by inertial effects. In this regime, the contact forces

are short-lived compared to the inertial effects and they instantaneously contribute to the

particle acceleration. Therefore, the momentum balance for the particle phase at Rep = 20

and φ = 0.38 is simplified to the equality of the particle hydrodynamic forces and particle
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FIG. 17. Particle diffusion coefficients from the present study and their comparisons to previous

studies: (a) Dyy and (b) Dzz (diffusion coefficients normalized by γ̇(D/2)2), averaged over all

particles initially located at 2 < y/D < 8 and on the statistically steady state diffusive time

interval, are shown for different φ and Rep. See figure 5 for particle Reynolds number color coding.

accelerations. At Rep = 20 and φ = 0.38, the fluid inertia was important in closing the

momentum balance of the fluid phase. For all other regimes with either lower φ or lower

Rep, the fluid inertia was negligible and the balance was simply between the gradient of fluid

phase stresses and the particle hydrodynamic forces. In these regimes, the particle inertia

term was however important in the particle phase momentum balance. The momentum

balance for the particle phase was between the particle hydrodynamic forces, the contact

forces and the particle acceleration forces.

At Rep = 20 and for all φ, the sum of hydrodynamic forces on particles, and the sum of

particle acceleration forces revealed high intermittency with high amplitudes of fluctuations.

While these spikes in particle acceleration resulted in intermittently high velocity fluctua-

tions, the time-averaged amplitude of velocity fluctuations were not higher than those at

lower particle Reynolds numbers. Therefore, similar to lower Reynolds numbers, at Rep = 20

we did not find the effect of Reynolds stresses on the bulk stress to be significant. High am-

plitude particle accelerations at Rep = 20 however enhanced the particle diffusion in the
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cross flow direction of the Couette gap. The effect of particle Reynolds number on particle

diffusion coefficients in the vertical and spanwise directions was small and non-monotonic

for the range 0.002 < Rep < 2. The diffusion coefficients in general increased at higher φ

as the particle interactions were stronger. The shear-induced particle rotational velocities

diminished significantly at Rep = 20, which can contribute to higher wall shear stress.

Finally, our simulations revealed that the particle diffusion, velocity fluctuations and

hydrodynamic forces are anisotropic in the streamwise, spanwise and vertical directions.

At Rep = 20, the particle velocity fluctuations and rotational velocities exhibit a more

uniform and isotropic distribution across the Couette gap as the inertial effects become more

dominant. However, addressing the isotropy of the suspension in PRS certainly requires

larger domain sizes and more computational resources, directions to be pursued in future

studies. While we have explored some of the distinct properties of the suspension at Rep =

20, many other aspects of the inertial effects on stresses and particle migration in suspensions

at high Reynolds numbers and different flow configurations are yet to be understood.
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