A. Einstein, Investigations on the Theory of the Brownian Movement, 1956.

G. I. Taylor, The viscosity of a fluid containing small drops of another fluid, Proc. R. Soc. Lond. A, vol.138, p.41, 1932.

G. Batchelor, The stress system in a suspension of force-free particles, J. Fluid Mech, vol.41, p.545, 1970.

J. F. Brady and G. Bossis, Stokesian dynamics, Annu. Rev. Fluid Mech, vol.20, p.111, 1988.
DOI : 10.1146/annurev.fluid.20.1.111

J. F. Brady, The rheological behavior of concentrated colloidal dispersions, J. Chem. Phys, vol.99, p.567, 1993.
DOI : 10.1063/1.465782

URL : https://authors.library.caltech.edu/5284/1/BRAjcp93b.pdf

K. D. Danov, On the viscosity of dilute emulsions, J. Colloid Interface Sci, vol.235, p.144, 2001.
DOI : 10.1006/jcis.2000.7315

J. D. Williams, W. Svrcek, and W. Monnery, The prediction of viscosity for mixtures using a modified square well intermolecular potential model, Dev. Chem. Eng. Miner. Process, vol.11, p.267, 2003.

E. Koval, A method for predicting the performance of unstable miscible displacement in heterogeneous media, Soc. Petrol. Eng. J, vol.3, p.145, 1963.

R. J. Blackwell, J. R. Rayne, and W. M. Terry, Factors influencing the efficiency of miscible displacement, Trans. AIME, vol.216, p.1, 1959.

L. D. Landau and E. M. Lifshitz, of A Course of Theoretical Physics, vol.8, 1960.

G. Matheron, Eléments pour une théorie des milieux poreux, 1967.

G. Dagan, Flow and Transport in Porous Formations, 1989.

B. Noetinger and Y. Gautier, Use of the Fourier-Laplace transform and of diagrammatical methods to interpret pumping tests in heterogeneous reservoirs, Adv. Water Resour, vol.21, p.581, 1998.

Y. A. Stepanyants and E. V. Teodorovich, Effective hydraulic conductivity of a randomly heterogeneous porous medium, Water Resour. Res, vol.39, p.1065, 2003.
DOI : 10.1029/2001wr000366

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2001WR000366

F. Willot and D. Jeulin, Elastic behavior of composites containing boolean random sets of inhomogeneities, Int. J. Eng. Sci, vol.47, p.313, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00426398

V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, 2012.
DOI : 10.1007/978-3-642-84659-5

B. Noetinger, The effective permeability of a heterogeneous porous medium, Transp. Porous Media, vol.15, p.99, 1994.

A. D. Wit, Correlation structure dependence of the effective permeability of heterogeneous porous media, Phys. Fluids, vol.7, p.2553, 1995.

P. Renard and G. De-marsily, Calculating equivalent permeability: A review, Adv. Water Resour, vol.20, p.253, 1997.
DOI : 10.1016/s0309-1708(96)00050-4

URL : http://doc.rero.ch/record/9768/files/Renard_Ph.-_Calculating_equivalent_permeability_20080903.pdf

M. Quintard and S. Whitaker, Transport in chemically and mechanically heterogeneous porous media. III. Large-scale mechanical equilibrium and the regional form of Darcy's law, Adv. Water Resour, vol.21, p.617, 1998.

L. Petit and B. Noetinger, Shear-induced structures in macroscopic dispersions, Rheol. Acta, vol.27, p.437, 1988.
DOI : 10.1007/bf01332166

R. Scirocco, J. Vermant, and J. Mewis, Effect of the viscoelasticity of the suspending fluid on structure formation in suspensions, J. Non-Newtonian Fluid Mech, vol.117, p.183, 2004.

A. Y. Malkin, A. Semakov, and V. Kulichikhin, Self-organization in the flow of complex fluids (colloid and polymer systems): Part 1: Experimental evidence, Adv. Colloid Interface Sci, vol.157, p.75, 2010.

R. Chatelin, D. Anne-archard, M. Murris-espin, M. Thiriet, and P. Poncet, Numerical and experimental investigation of mucociliary clearance breakdown in cystic fibrosis, J. Biomech, vol.53, p.56, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01476172

P. J. Mucha, S. Tee, D. A. Weitz, B. I. Shraiman, and M. P. Brenner, A model for velocity fluctuations in sedimentation, J. Fluid Mech, vol.501, p.71, 2004.

R. Romeu and B. Noetinger, Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media, Water Resour. Res, vol.31, p.943, 1995.

M. Le-ravalec, B. Noetinger, and L. Y. Hu, The FFT moving average (FFT-MA) generator: An efficient numerical method for generating and conditioning Gaussian simulations, Math. Geol, vol.32, p.701, 2000.

C. Beenakker, The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion), Physica A, vol.128, p.48, 1984.

B. Noetinger, A two fluid model for sedimentation phenomena, Physica A, vol.157, p.1139, 1989.
DOI : 10.1016/0378-4371(89)90037-x

S. P. Neuman and S. Orr, Prediction of steady state flow in nonuniform geologic media by conditional moments: Exact nonlocal formalism, effective conductivities, and weak approximation, Water Resour. Res, vol.29, p.341, 1993.
DOI : 10.1029/92wr02062

P. Indelman and B. Abramovich, A higher-order approximation to effective conductivity in media of anisotropic random structure, Water Resour. Res, vol.30, p.1857, 1994.

B. Noetinger, Computing the effective permeability of log-normal permeability fields using renormalization methods, Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, vol.331, p.353, 2000.

B. Abramovich and P. Indelman, Effective permittivity of log-normal isotropic random media, J. Phys. A, vol.28, p.693, 1995.
DOI : 10.1088/0305-4470/28/3/022

R. Chatelin and P. Poncet, A hybrid grid-particle method for moving bodies in a 3D Stokes flow with variable viscosity, SIAM J. Sci. Comput, vol.35, p.925, 2013.
DOI : 10.1137/120892921

R. Chatelin and P. Poncet, Hybrid grid-particle methods and penalization: A Sherman-MorrisonWoodbury approach to compute 3D viscous flows using FFT, J. Comput. Phys, vol.269, p.314, 2014.
DOI : 10.1016/j.jcp.2014.03.023

R. Chatelin and P. Poncet, A parametric study of mucociliary transport by numerical simulations of 3D non-homogeneous mucus, J. Biomech, vol.49, pp.4100-4119, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01581290