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We propose an estimation of the effective viscosity of a random mixture of Newtonian
fluids that ignores capillary effects. The local viscosity of the mixture is assumed to be
a random function of the position. Using perturbation expansions up to the second order,
the resulting formula can be recast under the form of a simple power averaging mixing
low. Numerical tests are used to assess the validity of the formula and the range of its
applicability.
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I. INTRODUCTION17

Computing the effective viscosity of complex fluids such as suspensions and emulsions is an18

old problem studied by Einstein and Taylor [1,2] among many others. Such calculations have19

applications in rheology and related areas. The general issue is to find the connection between the20

large-scale rheological behavior, mainly the viscosity of the mixture, and information regarding the21

fluid microstructure. In the case of suspensions, these data can be the shapes, sizes, volume fractions,22

and pair correlation functions of the suspended particles [3–5]. Similar approaches have been used23

for emulsions and immiscible inclusions of one fluid into another [2,6]. In another context, closer to24

thermodynamics, the viscosity of gas or liquid mixtures can be estimated from statistical mechanics25

principles using the properties of each fluid and microscopic interaction parameters. Many formulas26

have been proposed to estimate the viscosity (see Ref. [7] and references therein). In the oil industry,27

glycerol-water mixtures have been studied experimentally in the context of oil refining [8,9], leading28

to the so-called “quarter power mixing rule”:29

ηeff = 〈η−1/4〉−4 = [
cη

−1/4
Glycerol + (1 − c)η−1/4

Water

]−4
.

In this equation, ηeff is the effective viscosity of the mixture, ηGlycerol and ηWater are the respective30

viscosities of pure fluids, and c is the glycerol concentration; 〈·〉 is the arithmetic averaging. To the31

best of our knowledge, these empirical observations do not have any theoretical underpinning.32

In order to improve our understanding of viscosity homogenization, we will follow here the33

so-called stochastic approach [10–15], which is popular in the fields of random and composite34

materials and in hydrogeology. The key idea is to consider that the mixture can be represented35

by a single fluid characterized by a local viscosity modeled by a stationary random function which36

depends on the position. This random function is described by its two first moments: its local average37
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and its two-point correlation function. Such approaches are still the subject of active investigations38

in the study of random materials when determining both the effective Young modulus and the39

electrical conductivity [13–16] and references therein. Related mathematical techniques range from40

homogenization and stochastic perturbation techniques to diagrammatic techniques of theoretical41

physics. Due to the formal analogies in the underlying equations, such approaches were also followed42

to study the permeability of heterogeneous rocks [10–12,14,17–20]. As far as we know, stochastic43

homogenization has never been carried out for viscosity. This is probably due to the emphasis on the44

study of suspensions and emulsions which require specific techniques, because most of the analytical45

difficulty comes from the boundary condition at the interface separating both fluids. In these systems,46

there is a strong focus on the relationship between the microstructure of the suspension and its time47

evolution which can lead to quite subtle organizational effects [21–23].48

It seems rather difficult to study and set up real systems with random viscosity. First, emulsions49

with low surface tension seem to be good prospects. Indeed, the low surface tension hypothesis50

ensures that the pressure jump at the bubbles’ interfaces which maintains their sphericity does not51

change the analysis. Otherwise a Taylor-like calculation accounting for the details of the flow inside52

and outside a single bubble [2,6] is better suited.53

Moreover, a variable viscosity Stokes model is typical of biomicrofluidics with heterogeneities. A54

second example is shear-thinning fluids exhibiting space-variable concentrations [24] C in a globally55

constant shear fluid for which the Stokes equations are a good model as a first approximation (such56

as mucus or blood plasma). This leads to a viscosity μ(C,D) whose fluctuation correlation length57

remains statistically isotropic over time (D denotes the strain rate).58

A third candidate could be a system with random temperature fields inducing in turn viscosity59

variations appearing as random. In cases in which the thermal diffusion coefficient is smaller than60

the dynamic viscosity associated with the momentum diffusion, the predictions of present work61

could be tested experimentally. Finally, in the widely studied case of suspensions, at a given scale62

the fluctuations of averaged volume fraction of the suspended particles also induces fluctuations of63

the local effective viscosity of the suspension. These fluctuations have an overall effect that can be64

studied following our approach. So in turn, these fluctuations can be related to the overall effective65

viscosity of the mixture. The present work could furthermore contribute to our understanding of66

fluctuation effects in suspensions, which are known to be of great importance (see Ref. [25] and67

references therein). Another goal is to justify the emergence of the quarter power mixing rule. In68

short the present study provides a quantification of any fluctuating effect on viscosity as long as the69

one-phase Newtonian model is acceptable. In addition, our result can provide an analytic benchmark70

to test numerical Stokes solvers, as is done in random porous media [26].71

The paper is organized as follows: in Sec. II we present the Stokes equation and notations. In72

Sec. III we describe the random viscosity model. The definition of the effective viscosity is given in73

Sec. IV. In Sec. V A the perturbation method is carried out by means of a fluctuation expansion of74

the Stokeslet, as a power series of the viscosity fluctuations. Averaged results up to the second order75

are presented in Sec. V B. In Sec. VI we present the numerical methodology and results, followed76

by concluding remarks in Sec. VII.77

II. BASIC HYPOTHESIS AND EQUATIONS78

A. Basic equations and notations79

We consider the flow of an incompressible Newtonian fluid in an infinite three-dimensional (3D)80

domain in the context of low Reynolds number hydrodynamics. The fluid’s motion is governed by81

Stokes equations describing momentum and mass conservation:82

∇ · τ (r) + f(r) − ∇p(r) = 0,

τ (r) = η(r){∇v(r) + [∇v(r)]t }, (1)

∇ · v(r) = 0,
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where r, v(r), η(r), and τ (r) denote spatial position vector, the local fluid velocity, the local viscosity,83

and the local viscous stress tensor, respectively. The quantities f(r) and p(r) denote an arbitrary body84

force field and the associated pressure, respectively. The boundary conditions at infinity are implicitly85

assumed to be v(r) = 0, p(r) = 0, if the force field f(r) decays sufficiently fast.86

B. The homogeneous case87

In this section we consider that the viscosity is uniform: η(r) = η0. Due to the underlying linearity88

of the Stokes problem we can write89

v(r) =
∫

d3r′G(r − r′) · f(r′), (2)

p(r) =
∫

d3r′P(r − r′) · f(r′). (3)

The second order tensor G(r) is known as the Oseen tensor and is given by G(r) = 1
8πη0

( 1
|r| + rr

|r|3 ).90

Standard bold notations are used for vectors. The first order tensor P(r) = r
4π |r|3 is the pressure tensor.91

The convolution form suggests using Fourier transforms defined by92

h(q) =
∫

d3reiq·rh(r). (4)

This yields simpler linear relations between the Fourier transforms:93

v(q) = G(q) · f(q), (5)

p(q) = P(q) · f(q), (6)

where94

G(q) = (1 − q̂q̂)

η0q2
, (7)

P(q) = iq
q2

. (8)

Here q̂ = q
q

is the unit vector built with q. Using components we get more explicit expressions:95

Gαβ(q) = δαβ − q̂αq̂β

η0q2
, (9)

Pα(q) = iqα

q2
. (10)

When there is no ambiguity r and q will denote the real and Fourier variables, respectively.96

III. THE RANDOM MIXTURE97

In this section, we use the stochastic approach to introduce the random mixture model. The idea98

is to consider the local viscosity as being a random variable given by99

η(r) = η0 + δη(r), (11)

where η0 is the arithmetic mean viscosity. The quantity δη(r) is assumed to be a stationary random100

variable, depending on the location r, with the following properties:101

〈η(r)〉 = 0, (12)

〈δη(r)δη(r′)〉 = C(r′ − r). (13)
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The brackets 〈·〉 represent the averaging over all possible realizations. The pair correlation function102

C(r′ − r) of the viscosity fluctuation describes the spatial correlation between fluctuations at two103

points. For r′ − r = 0, C(0) is the local variance of the viscosity. In order to have a well-defined104

Fourier transform C(q) we assume that C(r′ − r) decays sufficiently fast at infinity. In the isotropic105

case, the correlation function depends only on the modulus of |r′ − r|, so we have C(r′ − r) =106

C(|r′ − r|). We also have C(q) = C(q) for the associated Fourier transform. In the simplest model,107

δη(r) is assumed to be a multi-Gaussian variable. There are standard and efficient algorithms [27]108

to generate 3D maps of δη(r) for an arbitrary covariance function C(r) of the spatial range lc. In the109

sequel we will consider an isotropic two-point correlation function depending only on the modulus110

of the lag vector (r′ − r).111

If we are not careful the viscosity can become negative in Eq. (11) because the noise δη(r) has a112

multi-Gaussian distribution. In order to avoid this problem, we consider that the logarithm log η of the113

local viscosity follows a normal distribution, i.e., η follows a log-normal distribution, which ensures114

positiveness. Therefore η(r) = ηg exp[σZ(r)] where the quantities ηg and σ 2 are the geometric115

average of the viscosity and the variance of the logarithmic viscosity, respectively. The quantity Z(r)116

is a random function of position assumed to be multi-Gaussian and having a unit variance. Moreover117

σ 2 is dimensionless. This gives a nonambiguous mathematical meaning to a small variance.118

IV. DEFINITION OF THE EFFECTIVE VISCOSITY119

In this section, we define the effective viscosity ηeff of the random mixture. We follow a technique120

that was proposed in the study of suspensions [28,29] or random porous media [17].121

Let f(r) be an arbitrary body force field acting on the fluid. In the case of a homogeneous fluid of122

viscosity ηeff, one gets, using Fourier transforms:123

v(q) = (1 − q̂q̂)

ηeffq2
· f(q), (14)

p(q) = iq
q2

· f(q). (15)

In the case of random mixture we expect after averaging a linear response of the form124

〈v(q)〉 = (1 − q̂q̂)

ηeff(q)q2
· f(q), (16)

〈p(q)〉 = p(q)
iq
q2

· f(q).

Such a form can be expected due to the linearity of the Stokes equations and to the statistical125

translational invariance of the system that leads to a convolution form after averaging. The second126

order calculation, presented in Sec. V, confirms this point. The so-called effective or equivalent fluid127

viscosity corresponds to the limit of these equations when q tends to 0. An algebraic definition of128

ηeff can thus be proposed, if the limit exists:129

ηeff = lim
q→0

ηeff(q). (17)

By analogy with random porous media [17] and using the isotropy of the system, we can rigorously130

predict the equality 〈p(q)〉 .= 1. This can be justified using arbitrary force fields derived from a131

potential: we consider a force field f(r) = −∇φ(r), where the force potential φ(r) is arbitrary with132

Fourier transform φ(q). In this case one obtains v(q) = 0 and p(q) = φ(q). As this equality is valid133

for any φ(q), we deduce that p(q) = 1. This means that the average pressure tensor remains equal134

to its homogeneous counterpart after averaging. In other words, the role of pressure is to project the135

equation on divergence-free fields. This can be better understood by writing Eqs. (16) in the physical136
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space:137

−
∫

d3r′ηeff(|r′ − r|)∇2〈v(r′)〉 = f(r) − ∇〈p(r)〉, ∇ · 〈v(r)〉 = 0. (18)

This equation once again means that 〈p(q)〉 = 1. Using similar methods [13], we can show that138

the viscosity kernel ηeff(r) has a spatial range equal to the underlying correlation length lc of139

the input random viscosity. Given the low frequency limit, the convolution in Eq. (18) can be140

approximated by a local product
∫

d3r′ηeff(|(r′ − r)|)∇2〈v(r′)〉 ∼ ∫
d3r′ηeff(|(r′)|)∇2〈v(r)〉. The141

large-scale effective viscosity can be defined as ηeff = ∫
d3r′ηeff(|(r′)|) = ηeff(q = 0). Alternatively,142

using formal perturbation expansion techniques like in Ref. [13], ηeff can also be derived using143

Feynman graphs and Dyson’s equation, which involves many resummations of higher order terms.144

This provides directly the form of the effective equation driving the average velocity 〈v(r)〉, like145

Eq. (18), driving the mean velocity rather than directly the mean velocity under the form (16). In146

other words, with this resummation we can obtain directly an expansion of ηeff as a power series of147

the viscosity fluctuation instead of 1/ηeff.148

In the next section, we present the basis of this perturbation expansion, without presenting the149

complete resummation techniques, which are not useful at the second order.150

V. SETTING UP A PERTURBATION EXPANSION151

A. General approach152

In this section, we set up the perturbation expansion by writing formally η(r) = η0 + εδη(r) and153

expanding the solution of Eqs. (1) as a formal power series of ε, called a Neumann series expansion.154

Here ε plays the role of a scaling parameter of the viscosity mean-square deviation. Strictly speaking,155

in order to avoid convergence issues, it would be more accurate to work directly with the logarithm of156

the viscosity. However, in the present paper the calculation of the Stokeslet solution will be restricted157

to second order terms of ε. Hence it is more convenient and it simplifies the presentation to work with158

this representation of the mixture. The log-normal transformation will be carried out only at the end159

of the section, keeping in mind that the log viscosity variance σ 2 is assumed to be small. Analogous160

situations and choices of variables arise when evaluating the effective conductivity of composites or161

of random conductivity materials [10–12,17,18,30].162

We next introduce the sequence of velocities v0(r), v1(r), . . . , vn(r), . . . , and p0(r), . . . , pn(r), . . .163

defined recursively by the solution to the following set of Stokes equations:164

−η0∇2v0(r) = f(r) − ∇p0(r) = 0, (19)

∇ · v0(r) = 0. (20)

We recognize the unperturbed Stokes equations. The recursion may be written as165

−η0∇2vn+1(r) − ∇ · {εδη(r)[∇vn(r) + ∇vn(r)t ]} = −∇pn+1(r), (21)

∇ · vn+1(r) = 0. (22)

Ignoring convergence issues we can check that v(r) = ∑∞
n=0 vn(r) and p(r) = ∑∞

n=0 pn(r) are166

solutions of Eqs. (1). It can be shown by direct recursion using Eq. (21) that each term vn(r) of this167

expansion is of order εn. Using the formal solution of the homogeneous case Eq. (2), one obtains168

vn+1(r) = −ε

∫
d3r′G(r − r′)∇ · {δη(r′)[∇vn(r′) + ∇vn(r′)t ]}, (23)

which may be rewritten using the tensorial components:169

vn+1
α (r) = −ε

∫
d3r′Gαβ(r − r′)∂ν1

{
δη(r′)

[
∂ν1 vn

β(r′) + ∂βvn
ν1

(r′)
]}

. (24)
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Here ∂x, y, or z indicate spatial derivations with respect to the space variable x,y,z as well as the170

variable if there is some ambiguity. The Einstein summation convention over repeated indices is171

fully satisfied. Finally, using integration by parts, one obtains172

vn+1
α (r) = −ε

∫
d3r′[∂ν1r ′Gαβ(r − r′)

]{
δη(r′)

[
∂ν1 vn

β(r′) + ∂βvn
ν1

(r′)
]}

. (25)

This formula shows that the nth order term involves rather complex integrations of products of n173

viscosity fluctuations evaluated at n different points. After averaging, the first order term will vanish.174

Combined with cumulant expansions of the nth order correlation functions of the viscosity, this175

formula is the starting point of diagrammatic expansions that are beyond the scope of this paper. The176

rest of the paper is limited to second order term (n = 2).177

B. Second order results178

In this section, we compute the second order correction obtained after two applications of the179

recursion equation Eq. (25):180

v2
α(r) = ε2

∫
d3r1

∫
d3r2

[
∂ν1r1 Gαβ(r − r1)

]
δη(r1)

{[
∂ν1r1∂ν2r2 Gβγ (r1 − r2)

]
δη(r2)

× [
∂ν2 v0

γ (r2) + ∂γ v0
ν2

(r2)
] + [

∂βr1∂ν2r2 Gν1γ (r1 − r2)
]
δη(r2)

[
∂ν2 v0

γ (r2) + ∂γ v0
ν2

(r2)
]}

.

(26)

Since C(r2 − r1) = 〈δη(r1)δη(r2)〉, one obtains after averaging over the viscosity fluctuations:181

〈
v2

α(r)
〉 = ε2

∫
d3r1

∫
d3r2

[
∂ν1r1 Gαβ(r − r1)

]{[
∂ν1r1∂ν2r2 Gβγ (r1 − r2)

]
C(r2 − r1)

× [
∂ν2 v0

γ (r2) + ∂γ v0
ν2

(r2)
] + [

∂βr1∂ν2r2 Gν1γ (r1 − r2)
]
C(r2 − r1)

[
∂ν2 v0

γ (r2) + ∂γ v0
ν2

(r2)
]}

.

(27)

Up to the second order, this equation describes the average flow modification due to pair182

correlations between two viscosity fluctuations. Due to the statistical homogeneity, the final result183

appears under the form of several convolution products which are written under the form of simple184

products in the Fourier domain:185

〈
v2

α(q)
〉 = ε2iqν1

(1 − q̂q̂)αβ

η0q2

{
Hν1ν2βγ (q)

[
iqν2

(1 − q̂q̂)γ δ

η0q2
+ iqγ

(1 − q̂q̂)ν2δ

η0q2

]
fδ(q)

+Hβν2ν1γ (q)

[
iqν2

(1 − q̂q̂)γ δ

η0q2
+ iqγ

(1 − q̂q̂)ν2δ

η0q2

]
fδ(q)

}
. (28)

In this equation the tensor Hijkl(r) is defined by186

Hijkl(r) = ∂i∂jGkl(r)C(r), (29)

and its Fourier transform is given by187

Hijkl(q) =
∫

d3reiq·rHijkl(r).

Using our definition of the effective viscosity Eq. (17), we are interested in the low q (q → 0) behavior188

of Eq. (28) that is expected to be proportional to 1/q2. This can be verified by direct inspection of189

factors involving iq (1−q̂q̂)
η0q2 inside Eq. (28), assuming that Hijkl(q = 0) has a finite value. Assuming190

that the correlation function decays sufficiently fast at infinity [meaning lim
q→0

Hijkl(q) = Hijkl(q = 0)191
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exists], we check that the low-q behavior of Eq. (26) is the same as192

〈
v2

α(q)
〉 = ε2iqν1

(1 − q̂q̂)αβ

η0q2

{
Hν1ν2βγ (q = 0)

[
iqν2

(1 − q̂q̂)γ δ

η0q2
+ iqγ

(1 − q̂q̂)ν2δ

η0q2

]
fδ(q)

+Hβν2ν1γ (q = 0)

[
iqν2

(1 − q̂q̂)γ δ

η0q2
+ iqγ

(1 − q̂q̂)ν2δ

η0q2

]
fδ(q)

}
. (30)

In order to simplify notations, we can now set ε = 1.193

In the last equation, the fourth rank tensor H(q = 0) is defined by194

Hijkl(q = 0) =
∫

d3r∂i∂jGkl(r)C(r). (31)

This equality can be transformed using Parseval’s identity:195

Hijkl(q = 0) = 1

(2π )3

∫
d3qiqi iqj

(1 − q̂q̂)kl

η0q2
C(q)

= 1

(2π )3

∫
d3qiq̂i iq̂j

(1 − q̂q̂)kl

η0
C(q). (32)

We show in the Appendix that in the isotropic case, the following equality holds:196

Hijkl(q = 0) =
[
− 4

15
δij δkl + 1

15
{δikδjl + δilδjk}

]
C(r = 0)

η0
. (33)

The tensor contractions involved when inserting Eq. (32) in Eq. (30) are carried out in the Appendix.197

The final second order correction to the Stokeslet is equal to198

2

5

(1 − q̂q̂)

η2
0q

2
× C(r = 0)

η0
. (34)

As expected, this is proportional to the Oseen tensor 1−q̂q̂
q2 . This result is remarkable because it shows199

that up to the second order, in the Fourier domain, the q → 0 limit of the second order correction200

of ηeff depends only on the local variance of the viscosity fluctuations, and not on the particulars of201

the whole correlation function. With this form we can use the equivalent viscosity ηeff, Eq. (16) and202

Eq. (17) to get by direct identification the formula203

ηeff = η0

[
1 − 2

5

C(0)

η2
0

]
, (35)

which is valid up to the second order. It is now more convenient to return to logarithms using the204

formula (36), which is exact for log-normal variables and which is derived in the Appendix:205

〈ηω〉 1
ω = ηg(e(ωσ )2/2)

1
ω = ηg exp

(
ωσ 2

2

)
. (36)

In the general case, this formula relating first and second moments of a random variable and its206

logarithm is still valid up to the second order of interest. Using the same formula, η0 = 〈η〉 =207

ηg exp σ 2

2 . Thus one obtains at the second order:208

ηeff = η0

[
1 − 2

5

C(0)

η2
0

]

= ηg

[
1 + 1

2

C(0)

η2
0

− 2

5

C(0)

η2
0

]

= ηg

[
1 + 1

10

C(0)

η2
0

]
.
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The result in Eq. (35) may then be recast under the more compact and robust form of a power averaging209

formula, sharing the same second order expansion with respect to the log-viscosity variance σ 2 	 C(0)
η0

2210

for small σ 2:211

ηeff = 〈ηω〉 1
ω (37)

with ω = 1
5 .212

We recall that strictly speaking, this result is valid only at the second order. In practice it can213

be computed even for a large viscosity variance. Its theoretical validity domain is controlled by the214

validity of the second order expansion, and by the robustness of the proposed compact expression.215

This power law expression (37) corresponds to assumptions regarding higher order terms that are216

convenient to give the compact form (37). Presently, the validity of such assumptions may be217

evaluated only by means of laboratory or numerical experiments, or by a more complex theory218

that is still missing. Some clues of its existence can be guessed in the case of random material219

conductivity, in which these power law averages are known to be exact in one or two dimensions220

[11]. In the general case, fourth order calculations or renormalization group arguments help in such221

procedures [14,17,31,32]. Direct calculations done at the sixth order (corresponding to ε6 carried out222

independently by Refs. [18] and [33]) show that the assumptions leading to such resummations are223

incorrect. Moreover the corresponding high-order terms depend explicitly on the particulars of the224

correlation function. We expect these approximations to be valid if the correlation length is smaller225

than the characteristic length of the samples [17]. Even if in practice such formulas work very well,226

their theoretical foundation remains unknown. A mathematical study of the convergence of perturbed227

Neumann expansions would be useful for the community of disordered materials.228

VI. NUMERICAL TESTS229

In this section we present numerical evidence of the validity of Eq. (37) using a Stokes solver230

for viscous flows. This validation requires the generation of random viscosity maps and the solution231

to the Stokes equations with variable viscosity. These tests are difficult to carry out because our232

homogenization result is valid only for a small viscosity variance, and simulations in these conditions233

may yield noisy results. A compromise must then be found between an accurate signal-to-noise ratio234

(which means working with quite large σ 2) and a sufficiently small value of σ (in which case we235

remain in the theoretical validity domain).236

A. Numerical method and implementation237

We now set up a work flow to compare the effective viscosity derived from the computed238

velocity field and the value given by Eq. (37). We consider a cubic domain � filled by a random239

mixture of viscosity η. Inside the domain, fluid flows periodically between the lateral faces240

{x = xmin},{x = xmax},{y = ymin}, and {y = ymax} under a uniform force in the x direction. On the241

horizontal faces {z = zmin} and {z = zmax}, no-slip conditions are imposed for the velocity field v:242

v = 0.243

The velocity field v satisfies the Stokes equations:244

−div[2ηD(v)] = f − ∇p in �, (38)

where D(v) = (∇v + ∇vT )/2 is the strain rate tensor, p is the pressure, and f is the external force.245

We also set the incompressibility condition ∇ · v = 0 in � and periodic boundary conditions on246

lateral faces. We note that this flow corresponds to the Poiseuille flow in the constant viscosity case.247

For a given vector field u, we will denote by ζ (u) the solution of the Poisson equation248

−∇2ζ = −∇ · u in � with homogeneous Neumann boundary conditions, so that Pu = u − ∇ζ249

is the projection on divergence-free fields, with no slip-through condition (i.e., no normal velocity)250
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at boundaries. It has been shown [34,35] that introducing the sequence {v∗
k} satisfying251

−η∇2v∗
k+1 = f + [2D(Pv∗

k ) + (∇ · v∗
k )Id]∇η in � (39)

leads to the solution v of Eq. (38) by means of v = lim
k→∞

Pv∗
k .252

Boundary conditions for Eq. (39) at each iteration are v∗
k+1 = ∇ζ (v∗

k ) on {z = zmin} and {z = zmax},253

and periodic conditions for other faces. Moreover, solving Eq. (39), a Poisson equation, requires only254

the use of straightforward finite-difference stencils and a fast Fourier transform (FFT) solver. This255

leads to a robust numerical method, well suited for variable viscosity flows even with fluid-structure256

interactions [24,35,36].257

Once this calculation is carried out and the velocity field is computed, the effective viscosity ηeff of258

the mixture can be identified using the equivalent flow rate obtained solving the Poiseuille flow with259

constant viscosity ηeff. If we solve analytically the Stokes equation with homogeneous viscosity:260

ηeff∇2veff = f in �, (40)

with the same boundary conditions as in Eq. (38), we can then estimate ηeff by direct identification.261

The effective viscosity ηeff is defined such that the velocity field veff solution to Eq. (40) has the262

same mean flow rate as the field v solution to Eq. (38). Given that the external force f has only an263

x component, then using the boundary conditions, we can write veff = (v(z),0,0)T . The analytical264

solution of the Stokes equation may be found in textbooks and yields265

ηeff = (ymax − ymin)z3
max

12Qnum
f, (41)

where the global flow rate Qnum is computed from the numerical integration of the solution v. The266

resulting effective viscosity ηeff can be compared to the result given by Eq. (37).267

In our computations, the values xmin,ymin,zmin are set to 0 and xmax,ymax,zmax are set to 1, so that268

the domain is the unit cube. This cell is then discretized with a Cartesian grid having resolution N3
269

(N points in each direction, N = 129,193, or 257).270

B. Random field generation271

Random viscosity fields are built using a 3D version of FFT-MA correlated random field272

generator [27]. This algorithm produces random fields efficiently by taking advantage of the Fourier273

transform. In the algorithm’s implementation, we first generate a symmetric normalized covariance274

field CN , following the so-called Gaussian model:275

CN (h) = exp

[
−

(
h

lc

)2]
, (42)

where h is the space lag and lc is the correlation length. In what follows the length lc is always276

expressed with respect to the space step δx of a given discretization grid for the unit cube. This charac-277

teristic length is then written in the form ncδx, where nc is an integer. The associated variance is taken278

equal to unity. A Gaussian white noise z is also generated, and the final random field can be written as279

Z(r) = Z0 + F−1[
√
F(CN )F(z)(r)], (43)

where F (respectively F−1) is the discrete Fourier transform (respectively the discrete inverse280

Fourier transform) in the 3D space, and Z0 is the arithmetic average of Z.281

The final viscosity field is then given by282

η = ηgexp{σF−1[
√
F(CN )F(z)]}. (44)

In the sequel, the quantity ηg denotes the expected geometric average of η and will be set to 1. In283

Fig. 1 three random fields are plotted with different correlation lengths (lc = 3δx, 10δx, and 25δx at284

resolution 2573). Plotting the log viscosity histograms of one particular realization in Fig. 2 shows285
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FIG. 1. Random fields using isolevel surfaces and slices of viscosity (σ 2 = 0.1, lc = 3δx, 10δx, and 25δx

at resolution 2573, top to bottom).

that the histograms of viscosity logarithms are Gaussian. The small discrepancies may be explained286

by finite-size effects.287

With this particular Fourier-based method, we can build periodic fields in the x and y directions288

in order to ensure consistency with boundary conditions of the reference Poiseuille problem and in289

order to avoid spurious discontinuities. In the z direction, the presence of the nonslip conditions does290

not impose any z periodicity. After the observation of results with periodic or nonslip conditions291

in this direction, the direct effect on the estimated effective viscosity is negligible. We recall that292

the different correlation lengths are expressed under the form ncδx, where nc varies from 1 to m, m293

being the greater integer such that m × dx � 0.04. We also recall that the input viscosity geometric294

average is set to ηg = 1.295

Figure 3 shows expected and computed properties for 900 independent viscosity random fields296

generated by FFT-MA with resolution 2573. On the top plot, each point corresponds to a posteriori297

estimation of the geometric average using volume average of the corresponding viscosity map. We298

note that the computed average is then close to the input geometric mean (equal to 1). The dispersion299
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FIG. 2. Histograms of the values of ln(η) (σ 2 = 0.3) for three correlation lengths.

of the data depends strongly on the correlation length. We can expect such behavior due to the central300

limit theorem: the variance of the volume average scales as σ 2(lc3/V ), lc � V 1/3 where V is the301

volume of the unit cell (V = 1 in present case). We also note the large scaling factor of the plot302

in Fig. 3. In order to conclude this section, the bottom graph in Fig. 3 presents the empirical log303

viscosity variance computed for each of the 900 fields versus the input imposed variance σ . We304

observe a perfect agreement as the correlation between observed and input variance is excellent.305

C. Interpretation methodology306

In the sequel we present the simulation results on the unit cell � discretized with 129,193,307

and 257 grid points in each direction for both the log viscosity and the numerical solution of the308

Stokes equation. This discretization choice corresponds to space steps δx = δy = δz going from309

7.8 × 10−3 to 3.9 × 10−3.310

In order to set up our comparisons, we still take advantage of the log-normality to rewrite the311

power average formula (37) with ω = 1/5 in the form312

ln(ηeff) = 1

5

σ 2

2
. (45)

This result shows that by plotting ln(ηeff) with respect to σ 2/2, a slope of 1/5 is expected at least313

for small variances. We recall that our theoretical result (37) was obtained using averaging of the314

apparent viscosity over all the detailed viscosity realizations. In order to test this theoretical result,315

we have to compute the effective viscosity of several independent realizations of the input viscosity316

maps, and then average these values. The associated linear regression should then exhibit the 0.2317

slope. For each realization, the effective viscosity ηeff is computed with the expression (41).318

We set up a Monte Carlo study by computing the effective viscosity of several independent319

viscosity realizations sharing the same covariance structure. Each experiment is conducted as follows:320

first, we generate a random viscosity field η with FFT-MA (44) with unit geometric mean and expected321

variance σ 2; then we solve Stokes equations with variable viscosity field η; finally we compute ln(ηeff)322

for this input viscosity field using Eq. (41). A linear regression is then performed using the resulting323

set of values ln(ηeff)i with respect to σ 2
i , where i denotes the ith experiment with the associated ith324

viscosity random field. For each grid size and correlation length, 10 sets of viscosity random fields325
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FIG. 3. Empirical and expected properties of generated η fields.

are generated where the ith field of a set corresponds to an input variance σ 2 = 0.001i. In order326

to get enough data to achieve the stabilization of linear regressions we generate between 10 and 40327

independant sets. The number of generated sets for each grid resolution and lc value is displayed in328

Table I. For each value of σ 2 ∈ [0.001,0.01] we then obtain sets composed of 10 to 40 realizations.329

For a given variance or correlation length, we generate additional sets and go on until the regression330

slope converges, with a maximum of 40 sets in total. We stop adding sets when the resulting slope331

is close to the initial one. This method leads to a massive data storage and the manipulation of many332

data files. For example the total size of all the viscosity fields generated for 2573 resolution represents333

more than 800 GB.334

D. Results335

On Fig. 4 the effective log viscosity ln (ηeff) is plotted versus the real variance (real σ )2/2 for two336

different correlation lengths in the case of the unit domain discretized by 2573 points.The obtained337
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TABLE I. Number of realizations for each case.

Resolution 1293 1933

lc/δx 1 2 3 4 5 1 2 3 4 5 6 7
No. sets 40 40 40 40 40 20 20 20 40 40 40 40
Resolution 2573

lc/δx 1 2 3 4 5 6 7 8 9 10
No. sets 10 20 20 30 40 35 25 20 40 40

FIG. 4. Regressions for lc = 6δx and 10δx on 2573 grid.
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FIG. 5. Regressions for lc = 2δx on 2573 grid.

least square regression is plotted in dotted blue, and the expected theoretical straight line of slope 0.2 is338

plotted in plain red. As expected, the spreading of the data strongly depends on the correlation length339

(this was already the case for the geometric average plot) and the spreading due to the randomness of340

the underlying local viscosity fluctuations looks similar. A direct consequence of the data dispersion341

is that we need more independent realizations for high correlation lengths in order to get a reliable and342

stable regression slope. With a sufficient number of simulations, the theoretical slope 1/5 remains343

in good agreement with computations in a range of correlation lengths which increases as the grid344

resolution increases. For a small correlation length, we display the corresponding data and linear345

regression in Fig. 5. The apparent averaging exponent is smaller than the theoretical prediction.346

This may be explained by a systematic bias introduced by the poor discretization. However, this347

observation is in good agreement with the results obtained by Ref. [26] in the case of conductivity348

and permeability. In the opposite case of large correlation lengths, a regression slope close to unity is349

expected. For the very large correlation lengths (compared to the overall system size), the viscosity350

map is in fact homogeneous. The viscosity ηeff obtained by simulation will then be equal to the351

uniform common value, which remains a random log-normal variable (one single value per map).352

For other in-between correlation lengths, the apparent averaging exponent is expected to increase353

as the correlation length increases, with a plateau at 0.2. Figures 4 and 5 show the regression plots,354

which highlight the averaging exponent for different lc at resolution 2573.355

In Fig. 6 the averaging exponents given by through the regressions are plotted with respect to356

the correlation length for three grid resolutions. The curve starts from small negative values for357

uncorrelated media, and then reaches a plateau close to the theoretical value of 1/5 before increasing358

to unity. We note that a very high resolution (2573) is needed to validate the theoretical result.359

We can also observe that, for each regression, the data deviation from the regression line is of360

the form ε
√

(real σ )2/2 (see, e.g., Fig. 4). It is then possible to rewrite the regression formula in the361

form362

ln(ηeff ) = p(real σ )2/2 + b + ε
√

(real σ )2/2,

with p the regression slope and b the intercept. This is transformed into a multilinear expression363

which is used in the R software package. This provides the standard error estimation for slope. Error364

bars on the lower panel of Fig. 6 represent 95% confidence intervals with respect to this estimation.365
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FIG. 6. Regression slopes of ln(ηeff) vs (real σ )2/2 for different values of lc and resolutions. Top : slope
estimations; bottom: slope estimations with 95% confidence intervals.

VII. COMMENTS AND CONCLUDING REMARKS366

Simulations provide results in good agreement with the power averaging formula (37), as the367

regression slopes present a plateau close to the theoretical value of 0.2. For the two coarser grids of368

1293 and 1933 resolutions, an inflection in the slopes can be observed around this value. In order to369

obtain significant results, both a sufficient number of discretization points per correlation length and370

many correlation lengths are necessary to ensure the stabilization of the effective viscosity. There is371

actually no generalized result on the convergence with respect to the grid resolution, although we372

can expect such converging behavior because of the central limit theorem.373

The range of σ 2 for viscosity random fields has been carefully chosen. Small values of σ 2
374

under 0.001 lead to meaningless results because small numerical errors dominate when viscosity375

fluctuations are so small. In the same way, values greater than 0.01 must be considered with caution376
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because the theory is based on the series expansion of σ 2. Furthermore, if we use low correlation377

lengths with σ 2/2 > 0.22, the high values of ∇η can prevent the Stokes solver from converging.378

We note that the variance of the observed effective viscosity depends strongly on the correlation379

length. This imposes severe constraints regarding the size of the computational grid.380

In the case of the effective conductivity or permeability of random media, the power averaging381

formula (which is exact in one or two dimensions) is proved to be a very efficient approximation382

in three dimensions, up to log-conductivity variances of seven corresponding to variations of local383

conductivity of several orders of magnitude [30]. The results of this paper demonstrate that this384

approximation appears less robust in the context of the Stokes equation. A possible explanation is385

that due to its 1/q2 factor, the Stokes equation propagator over-amplifies low frequency fluctuations.386

Our observation is also reminiscent of the observed wide fluctuations of sedimentation velocity in387

suspensions and the appearance of large structures (see Ref. [25] and references therein).388

Finally, with reference to the known rheological literature, the power average formula with389

averaging power of 1/5 does not compare well with analogous results as provided by the quarter power390

mixing rule −1/4 [2,6,8,9]. We note that in the case of the effective viscosity of emulsions, the strong391

capillarity assumption which ensures overall sphericity of the bubbles changes the local boundary392

conditions of the flow at the bubbles’ boundaries. As a result, an increased energy dissipation is393

expected, and thus a greater effective viscosity [2,6] is obtained. This happens even if both fluids are394

assumed to share an almost common viscosity in order to be consistent with our calculations.395

The effective viscosity averaging formula derived in this paper may be considered as a first396

estimator as far as minimal information is provided regarding the microstructure of a mixture.397

Improvement can be obtained if additional information becomes available. From the point of view of398

computational fluid dynamics (CFD), the proposed formula can be used to test numerical methods399

aiming at solving Stokes equations with variable viscosity. These numerical issues are the source of400

major progress toward the development of micro- and nanofluidics modeling tools.401

APPENDIX402

1. Evaluation of tensor H in the isotropic case403

In the case of isotropic correlations, the following quantity must be computed in order to obtain404

explicit second order results for the effective viscosity:405

Hijkl(q = 0) = 1

(2π )3

∫
d3qiqiiqj

(1 − q̂q̂)kl

η0q2
C(q)

= 1

(2π )3

∫ ∞

0
4πC(q)q2 dq

1

4π

∫
d2q̂iq̂i iq̂j

(1 − q̂q̂)kl

η0

= C(r = 0)
1

4π

∫
d2q̂iq̂i iq̂j

(1 − q̂q̂)kl

η0
. (A1)

Due to the isotropy, the angular integral does not depend on q. The term C(r = 0) can then406

be recognized by computing the inverse Fourier transform. In order to compute the full tensor407

components, several integrals over the unit sphere must be computed:408

Kijkl = 1

4π

∫
S1

d2q̂iq̂i iq̂j (1 − q̂q̂)kl . (A2)

By isotropy, the integral of 1
4π

∫
S1

d2q̂iq̂i iq̂j is proportional to the unit tensor, so it is sufficient to409

evaluate its trace. We therefore obtain410

1

4π

∫
S1

d2q̂iq̂i iq̂j δkl = −1

3
δij δkl . (A3)
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The same type of reasoning can be followed for the evaluation of the other term 1
4π

∫
S1

d2q̂iq̂i iq̂j q̂kq̂l ,411

which is obviously symmetric over all its pairs of indices. The expression is thus proportional to412

the tensor δij δkl + δikδjl + δilδjk . The proportionality constant may be determined by evaluating its413

partial trace over any pair of indices. We finally obtain414

−1

4π

∫
S1

d2q̂iq̂i iq̂j q̂kq̂l = 1

15
{δij δkl + δikδjl + δilδjk}.

Returning to tensor H, we then obtain415

Hijkl(q = 0) = −
[

1

3
δij δkl + 1

15
{δij δkl + δikδjl + δilδjk}

]
C(r = 0)

η0
(A4)

=
[
− 4

15
δij δkl + 1

15
{δikδjl + δilδjk}

]
C(r = 0)

η0
, (A5)

which is Eq. (33).416

2. Tensor contractions417

In this Appendix, we give some algebraic details about the simplification of Eq. (30), which leads418

to formula Eq. (35) when combined with Eq. (33). Using Eq. (30) combined with Eq. (33) (which419

is the sum of three elementary tensors), we observe that several tensor contractions must be carried420

out. The main steps are sketched below:421

iqν1

(1 − q̂q̂)αβ

η0q2

{[−4

15
δν1ν2δβγ + 1

15

(
δν1βδν2γ + δν1γ δν2β

)][
iqν2

(1 − q̂q̂)γ δ

η0q2
+ iqγ

(1 − q̂q̂)ν2δ

η0q2

]

+
[
− 4

15
δβν2δν1γ + 1

15

(
δβν1δν2γ + δβγ δν2ν1

)][
iqν2

(1 − q̂q̂)γ δ

η0q2
+ iqγ

(1 − q̂q̂)ν2δ

η0q2

]}

= iqν1

(1−q̂q̂)αβ

η0q2

[
−1

5

(
δν1ν2δβγ +δβν2δν1γ

)+ 2

15
δν1βδν2γ

][
iqν2

(1 − q̂q̂)γ δ

η0q2
+iqγ

(1 − q̂q̂)ν2δ

η0q2

]

= −1

5

[
iqν2

(1 − q̂q̂)αγ

η0q2
+ iqγ

(1 − q̂q̂)αν2

η0q2

][
iqν2

(1 − q̂q̂)γ δ

η0q2
+ iqγ

(1 − q̂q̂)ν2δ

η0q2

]

= 2

5

(1 − q̂q̂)αδ

η2
0q

2
. (A6)

Throughout this calculation, we have removed the contraction with fδ(q), which is of no interest.422

3. Power average of log-normal variables423

The general equality (36) may be derived using Gaussian integrals for log-normal variables:424

〈ηω〉 1
ω = ηg(e(ωσ )2/2)

1
ω = ηg exp

(
ωσ 2

2

)
. (A7)

We start from425

〈ηω〉 1
ω = ηg〈exp(ωσζ )〉 1

ω (A8)

with ζ = F−1(
√
F(C)F(z)). The estimation of the average can be carried out, using the probability426

density associated with random variable ζ (with average 0 and unit variance):427

〈exp(ωσζ )〉 =
∫
R

eωσζ

(
1

N
e−ζ 2/2

)
dζ ,

where the normalization parameter N ensures that
∫
R

1
N

e−x2/2 dx = 1.428
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We then obtain429

〈exp(ωσζ )〉 =
∫
R

1

N
eωσζ−ζ 2/2 dζ

=
∫
R

1

N
e[(ωσ )2−(ζ−ωσ )2]/2 dζ

= e(ωσ )2/2
∫
R

1

N
e−(ζ−ωσ )2/2 dζ

= e(ωσ )2/2
∫
R

1

N
e−Y 2/2 dY (with Y = ζ − ωσ )

= e(ωσ )2/2,

which leads to Eq. (36). A direct application of previous calculations shows that430

〈η〉2 = η2
g exp(σ 2),

〈η2〉 = η2
g exp(2σ 2).

The variance C(0) of η is then given by431

C(0) = η2
g exp(σ 2) × [exp(σ 2) − 1]. (A9)

For small log viscosity variance σ 2, one obtains a direct relation between the variance of viscosity432

and the variance of the corresponding logarithm:433

C(0) 	 η2
gσ

2. (A10)
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