Precursor and ambient rock paleothermometry to assess the thermicity of burial dolomitization in the southern Cantabrian Zone (northern Spain)

Abstract : Paleozoic rocks in the Cantabrian Zone, and the Variscan foreland fold-and-thrust belt on the Iberian Peninsula have been affected by a sequence of diagenetic to epizonal thermal events. Late- to Post-Variscan hot fluid circulation caused a large-scale burial dolomitization and ore mineralization, mostly in Cambrian and a Lower to Middle Carboniferous carbonate sucessions. The goal of this study is to analyze and compare the temperatures experienced by the carbonate precursor rocks, as well as the under- and over-lying siliciclastic ambient rocks to gain a better understanding of the thermicity of dolomitization. These temperatures are evaluated based on published paleothermal datasets combined with new data obtained from Rock–Eval pyrolysis and vitrinite reflectance analysis of Carboniferous rocks rich in organic matter. The overall results indicate that reworking of detrital sediments in synorogenic ambient siliciclastics results in an anomalously high thermal maturity recorded by bulk rock techniques such as illite crystallinity and Rock–Eval pyrolysis. In situ VR-derived paleotemperatures recorded by ambient siliciclastic rocks appear to be higher compared to CAI-derived temperatures for carbonate precursor rocks. This variation in thermal maturity is likely related to the analytical techniques used to obtain CAI and VR data, and the empirical equations applied to calculate corresponding paleotemperatures. Conodont fragments were not as sensitive compared to vitrinite, and the color alteration process could have suffered from hydrothermal alteration. A secondary cause might be a different response to mechanical deformation between siliciclastic and carbonate units during the Variscan and post-Variscan geodynamic evolution of the study area. Rigid precursor carbonate units experienced fluid circulation mainly along distinct and spaced fracture zones, creating fracture-related dolomite geobodies and ore mineralization. Soft ambient siliciclastic rocks experienced more diffuse fluid circulation and heat dissipation. The different paleothermometry datasets compiled for the study area indicate that the fluids circulating during Late- to Post-Variscan times, with associated fracture-related dolomitization and ore mineralization in carbonate precursors, are hydrothermal. The highest paleotemperatures were recorded in ambient and precursor rocks in the highly tectonized northern part of the study area, where several thrusts and faults allowed intense fluid circulation. Positive temperature anomalies within the precursor carbonates correlate well with the occurrence of dolomite geobodies and ore mineral deposits. Such anomalies could thus be used as an exploration tool for hydrothermal dolomite bodies in analog sub-surface settings.
Document type :
Journal articles
Complete list of metadatas

Cited literature [103 references]  Display  Hide  Download

https://hal-ifp.archives-ouvertes.fr/hal-01837082
Contributor : Nadine Couëdel <>
Submitted on : Monday, July 16, 2018 - 3:36:02 PM
Last modification on : Thursday, February 21, 2019 - 10:31:47 AM
Long-term archiving on : Wednesday, October 17, 2018 - 12:16:53 PM

File

Post-print Honlet.pdf
Files produced by the author(s)

Identifiers

Collections

IFP

Citation

R. Honlet, M. Gasparrini, H. Jäger, Ph. Muchez, R. Swennen. Precursor and ambient rock paleothermometry to assess the thermicity of burial dolomitization in the southern Cantabrian Zone (northern Spain). International Journal of Earth Sciences, Springer Verlag, 2018, 107 (4), pp.1357 - 1377. ⟨10.1007/s00531-017-1541-2⟩. ⟨hal-01837082⟩

Share

Metrics

Record views

28

Files downloads

9