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Abstract

In the present work, we deal with the convergence of cell-centered nonlinear finite volume schemes

for anisotropic and heterogeneous diffusion operators. A general framework for the convergence

study of finite volume methods is provided and used to establish the convergence of the new meth-

ods. Thorough assessment on a set of anisotropic heterogeneous problems as well as a comparison

with linear finite volume schemes is provided.

Keywords: monotone, finite volume methods, heterogeneous anisotropic diffusion, multi-point

flux approximation, convergence analysis

1. Introduction1

In a variety of physical problems, as for example multi-phase flow in porous media, efficient2

and robust schemes are required for the discretization of Darcy-type equations. One of the key3

ingredients for the numerical solution of this type of equations is the discretization of anisotropic4

heterogeneous elliptic terms [1] on highly complex unstructured grids. In order to maintain mass5

conservation, the most commonly used schemes applied to Darcy-type equations are either cell-6

centered finite volume methods, such as multi-point flux approximation methods (MPFA) [2, 3, 4,7

5, 6, 7], or mixed and hybrid schemes, such as the mixed finite element (MFE) [8, 9], the mimetic8

finite difference (MFD) [10, 11] or the hybrid finite volume schemes (HFV) [12, 13]. These mixed9

or hybrid methods introduce additional face unknowns, whereas MPFA schemes use interpolation10

rules to eliminate these additional degrees of freedom.11

None of these schemes are unconditionally monotone for general heterogeneous and anisotropic12

elliptic terms and grids. For example, it is proven in [14] that there exist no linear higher-order13

unconditionally monotone control-volume schemes. Monotone schemes are not only desirable in14
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terms of reliability, but also because of the improved robustness. Thinking of highly nonlinear15

coupled partial differential equations, where secondary variables are calculated using physical laws16

and relationships that non-linearly depend on primary variables, unphysical solutions can cause17

convergence problems of linear and nonlinear solvers during the simulation run. Relaxation of the18

linearity requirement of the schemes allows the construction of nonlinear monotone finite volume19

schemes. The first concepts of positivity-preserving or discrete extremum-principles-preserving20

schemes have been presented in [15, 16, 17, 18].21

In this article, the proof of convergence of a family of numerical methods is given. The proof22

relies on concepts that have been developed in [4]. It generalizes the one given in [19] and allows to23

prove the convergence for the nonlinear finite volume schemes introduced in [15, 16, 17, 18, 20, 21]24

for which no proof yet existed, as mentioned in [22].25

This work is organized as follows: In Section 2, a generic finite volume framework is given,26

including the proof of convergence under some hypotheses. In Section 3, this framework is used27

to prove the convergence for a specific family of discretizations. The idea of schemes belonging to28

this family is the construction of face flux approximations as a convex combination of consistent29

linear approximations. In Section 4, two representatives of this family, a nonlinear two-point30

flux approximation (NLTPFA) and a nonlinear multi-point flux approximation (NLMPFA), are31

derived. These approximations are constructed such that the NLTPFA scheme is monotone and32

the NLMPFA satisfies discrete extremum principles. Furthermore, sufficient conditions are derived33

to guarantee the strong consistency of the fluxes. Additionally, possible face interpolators, for34

which the convergence theory holds, are presented. These schemes are compared to linear ones in35

Section 5. In the first part 5.1, the convergence of the schemes is analyzed for a mildly and highly36

anisotropic test case on unstructured grids. In the second part 5.2, the schemes are tested for37

the extremum-principle-preservation property and it is demonstrated that linear schemes produce38

negative solution values, in contrast to nonlinear ones. In the last part of Section 5, the linearity-39

preservation property is investigated and the Northeast German Basin serves as a benchmark40

problem.41

2. Abstract framework42

In this section, we present a generic finite volume framework, following ideas that have been43

introduced in [4]. In Section 2.1, we define the model problem together with generic finite volume44

discretization schemes. In Section 2.2, proof of convergence of these schemes is given. Furthermore,45

the existence of discrete solutions is discussed in Section 2.3.46
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2.1. Model problem and finite volume discretization47

Let Ω ⊂ Rd, d ∈ N∗, be an open bounded connected polygonal domain with boundary ∂Ω. Let48

Λ be a symmetric tensor-valued function such that (s.t.) there exist 0 < α0 < β0 < +∞ so that,49

for almost every (a.e.) x ∈ Ω, the spectrum of Λ(x) is contained in [α0, β0]. In the following, the50

problem51 ∇·(−Λ ∇u) = f in Ω,

u = 0 on ∂Ω,

(1)

is considered, where f ∈ Lr(Ω) with r > 1 if d = 2 and r = 2d
d+2 if d > 2. The existence and52

uniqueness of a weak solution u ∈ H1
0 (Ω) of problem (1) is a classical result.53

Remark 1. Other standard types of boundary conditions can be considered. However, for ease of54

presentation, homogeneous Dirichlet conditions are considered within this section.55

In what follows, the definition of finite volume discretizations for problem (1) and a generic56

framework covering fairly general (possibly non-conforming) polygonal meshes is provided.57

Definition 1 (Admissible family of discretizations). An admissible family of finite volume dis-58

cretizations {Dn}n∈N is a triplet Dn = (Tn, En,Pn), where59

(i) Tn is a finite family of non-empty connected open disjoint subsets of Ω (the cells or control60

volumes) s.t. Ω = ∪K∈TnK. For all K ∈ Tn, we denote by mK > 0 its d-dimensional measure61

(the volume) and let ∂K
def
= K \K;62

(ii) En is a finite family of subsets of Ω (the faces) s.t., for all σ ∈ En, σ is a non-empty closed63

subset of a hyperplane of Rd with (d − 1)-dimensional measure mσ > 0 (the area), and s.t.64

the intersection of two different faces has zero (d−1)-dimensional measure. We assume that,65

for all K ∈ Tn, there exists a subset EK of En such that ∂K = ∪σ∈EKσ. For a given σ ∈ En,66

either Tσ
def
= {K ∈ Tn |σ ∈ EK} has exactly one element and then σ ⊂ ∂Ω ( boundary face)67

or Tσ has exactly two elements ( inner face); the sets of inner and boundary faces are denoted68

by En,int and En,ext respectively;69

(iii) Pn = {xK}K∈Tn is a family of points of Ω indexed by Tn (the cell centers, not required to70

be the barycenters) s.t. xK ∈ K and K is star-shaped with respect to xK . For all K ∈ Tn71

and for all σ ∈ EK we denote by dK,σ the Euclidean distance between xK and the hyperplane72

supporting σ. We suppose that there exist 0 < %1, %2, %3 < +∞ independent of n s.t.73

min
K∈Tn, σ∈EK

dK,σ
diam(K)

≥ %1, min
σ∈En,int, Tσ={K,L}

min(dK,σ, dL,σ)

max(dK,σ, dL,σ)
≥ %2, min

K∈Tn

diam(K)

hDn
≥ %3,

(2)

where hDn denotes the size of the discretization defined by hDn
def
= supK∈Tn diam(K).74
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Figure 1: An example of admissible mesh for d = 2.

Figure 1 presents an example of an admissible mesh in two space dimensions. With items (ii)75

and (iii), and since
mσ dK,σ

d is the measure of the convex hull 4K,σ of xK and σ, it is inferred that76

77

∀K ∈ Tn,
∑
σ∈EK

mσ dK,σ = dmK . (3)

For all K ∈ Tn and σ ∈ EK , we denote the unit vector that is normal to σ and outward to K with78

the term nK,σ. For all K ∈ T and for all Φ ∈ L1(K), we set 〈Φ〉K
def
= m−1

K

∫
K

Φ dx. For vectorial79

functions, this notation is meant component-wise. For all vectors x ∈ Rn, n ∈ N∗, the Euclidean80

norm will be denoted by |x| def
=
√
x·x; for all matrices A ∈ Rn × Rn, n ∈ N∗, we shall denote by81

|A| the norm induced by the scalar product of Rn, i.e., |A| def
= supx∈Rd

|Ax|
|x|

. The vector space of82

bounded linear operators from E to F will be denoted by L(E;F ).83

In what follows, when referring to a generic elementDn of an admissible family of discretizations84

{Dn}n∈N, the subscript n will be dropped for the ease of reading in the case that no ambiguity85

arises. The space of piecewise constant functions on T is defined as86

HT (Ω)
def
= {v ∈ L2(Ω) | v|K ∈ P0(K), ∀K ∈ T }.

For all v ∈ HT and for all K ∈ T , vK will denote the (constant) value of v on K, i.e., v|K(x) = vK87

for all x ∈ K. In order to endow HT with a discrete H1 norm, it is equipped with the following88

norm89

||v||T
def
=

(∑
K∈T

∑
σ∈EK

mσ

dK,σ
|γσv − vK |2

)1/2

,

where γσ ∈ L(HT (Ω);P0(σ)) is defined as90

∀v ∈ HT (Ω),


γσv =

dL,σvK + dK,σvL
dK,σ + dL,σ

if σ ∈ Eint with Tσ = {K,L},

γσv = 0 if σ ∈ Eext.

Let aT (u, v, w) be a form defined for all (u, v, w) ∈ [HT (Ω)]3. In what follows, discretizations91

for (1) of the form92

Find u ∈ HT (Ω) s.t. aT (u, u, v) =

∫
Ω

fv dx for all v ∈ HT (Ω) (4)

are considered.93
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Remark 2. Any conservative finite volume scheme is equivalent to a discrete problem of type (4).94

For all K ∈ T , and for all σ ∈ EK , let FK,σ : HT (Ω) × HT (Ω) 7→ P0(σ) be a numerical flux95

function meant to approximate the diffusive flux flowing out of K through σ such that the finite96

volume scheme reads: For all K ∈ T ,97

−
∑
σ∈EK

FK,σ(u, u) =

∫
K

f dx, (5)

with locally conservative fluxes: for all (u, v) ∈ HT (Ω)×HT (Ω), σ ∈ Eint and Tσ = {K,L},98

FK,σ(u, v) + FL,σ(u, v) = 0. (6)

Then, for all v ∈ HT (Ω), by multiplying equation (5) with vK , K ∈ T , summing up the99

resulting equation over K ∈ T , we obtain for any v ∈ HT (Ω),100

−
∑
K∈T

∑
σ∈EK

FK,σ(u, u)vK =

∫
Ω

fv dx. (7)

Thus, for all (u, v, w) ∈ [HT (Ω)]3, we define the form101

aT (u, v, w)
def
= −

∑
K∈T

∑
σ∈EK

FK,σ(u, v)wK . (8)

Then, thanks to (7) and (8), we obtain a discrete problem of type (4) with aT defined by (8). Fur-102

thermore, starting from the discrete problem (4) with aT defined by (8), equation (5) is obtained103

by taking for each K ∈ T , vK = 1 and vK′ = 0 for all K ′ ∈ T s.t. K ′ 6= K.104

Remark 3. One can also easily verify that the discrete problem of type (4) is equivalent to the105

problem: Find u ∈ HT (Ω) such that for all K ∈ T106

AT (u) =

∫
K

f dx,

where the function AT : v 7→ AT (v), a mapping from HT (Ω) to HT (Ω), is defined as107

(AT (v))K
def
= aT (v, v,1K), (9)

for each K ∈ T , where 1K is the element of HT (Ω) equal to one on K and zero elsewhere.108

Finally, we introduce the discrete gradient ∇̃D ∈ L(HT (Ω); [HT (Ω)]d) which is defined such109

that for all K ∈ T and all v ∈ HT (Ω),110

∇̃Dv|K =
1

mK

∑
σ∈EK

mσ(γσv − vK)nK,σ. (10)

For all v ∈ HT and for all K ∈ T , (∇̃Dv)K will denote the (constant) value of ∇̃Dv on K,111

i.e., ∇̃Dv|K(x) = (∇̃Dv)K for all x ∈ K. Let us notice that Equation (3) together with the112

Cauchy-Schwarz inequality yield113

‖∇̃Dv‖[L2(Ω)]d ≤
√
d‖v‖T ∀v ∈ HT (Ω). (11)
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2.2. Convergence analysis114

The aim of this section is to carry out a convergence analysis for finite volume schemes of type115

(4) by assuming the following properties of the form aT (u, v, w).116

Hypotheses 1. Let {Dn}n∈N be a family of discretizations matching Definition 1 s.t. hDn → 0117

as n → ∞. Let D be a dense subspace of H1
0 (Ω) s.t. D ⊂ C0(Ω), where C0(Ω) denotes the space118

of continuous functions which vanish on ∂Ω. For all ϕ ∈ D, we denote by ϕTn the element of119

HTn(Ω) s.t., for all K ∈ Tn, ϕTn |K = ϕ(xK). We suppose that:120

(P1) for any v ∈ HTn(Ω), v 7→ aTn(v, ·, ·) is a bilinear form;121

(P2) aTn is uniformly coercive, i.e., there is 0 < γ1 < +∞ independent of n s.t.122

∀(u, v) ∈ HTn(Ω)×HTn(Ω), aTn(u, v, v) ≥ γ1‖v‖2Tn ;

(P3) aTn is weakly consistent on D, i.e., for all ϕ ∈ D,123

εDn(ϕ)
def
= max

(u,v)∈[HTn (Ω)]2,v 6=0

1

‖v‖Tn

∣∣∣∣aTn(u, ϕ, v)−
∫

Ω

Λ∇ϕ·∇̃Dnv dx

∣∣∣∣→ 0 as n→∞.

(12)

Remark 4. Owing to (3), for a form aTn such as (8) derived from a conservative finite volume124

method, Property (P3) holds for strongly consistent numerical fluxes, i.e. fluxes, for which there125

is 0 < C1 < +∞ independent of n, s.t. for all ϕ ∈ D,126

∀K ∈ Tn, ∀σ ∈ EK , max
u∈HTn (Ω)

|FK,σ(u, ϕTn)−mσ〈Λ∇ϕ〉K ·nK,σ| ≤ C1 mσ hDn . (13)

Indeed, thanks to the conservation of the fluxes (6), after inserting for each σ ∈ Eint, γσv in the127

expression of aTn(u, ϕ, v) given by (8), we get128

aTn(u, ϕ, v) =
∑
K∈Tn

∑
σ∈EK

FK,σ(u, ϕTn)(γσv − vK). (14)

Furthermore, using (10), we have129 ∫
Ω

Λ∇ϕ·∇̃Dnv dx =
∑
K∈Tn

∑
σ∈EK

mσ〈Λ∇ϕ〉K ·nK,σ(γσv − vK). (15)

Hence, by taking the difference between (14) and (15), using (13) and Cauchy-Schwarz inequality130

along with (3), we deduce that εDn(ϕ) ≤ C1

√
dmΩ hDn , leading to (P3).131

The main result of this section is stated in the theorem below.132

Theorem 1 (Convergence). Let us assume that Hypotheses 1 hold and that for each n ∈ N, there133

exists at least one solution un ∈ HDn(Ω) to the problem (4). Then, as n → ∞, the sequence of134

discrete solutions of problem (4), denoted as {un}n∈N, converges to the solution u of (1) in Lq(Ω)135

for all q ∈ [1, 2d/(d− 2)) (and weakly in L2d/(d−2)(Ω) if d > 2).136
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Proof. The proof is based on a few technical propositions which are reminded in Section 7. Owing137

to the stability estimate (68) together with Theorem 2, there is ũ ∈ H1
0 (Ω) s.t., up to a subsequence,138

(i) {un}n∈N converges to ũ in Lq(Ω) for all q ∈ [1, 2d/(d−2)) (and weakly in L2d/(d−2)(Ω) if d > 2)139

and (ii) {∇̃Dnun}n∈N weakly converges to ∇ũ in [L2(Ω)]d. It only remains to prove that ũ = u.140

Let ϕ ∈ D. Owing to (11) together with (P2) and (P1), we infer141

‖∇̃Dn(un−ϕTn)‖2[L2(Ω)]d ≤ d‖un−ϕTn‖
2
Tn ≤

d

γ1
aTn(un, un−ϕTn , un−ϕTn) =

d

γ1
(T1 + T2) , (16)

where T1
def
=
∫

Ω
f(un − ϕTn) dx and T2

def
= aTn(un, ϕTn , ϕTn − un). Since f ∈ Lr(Ω) and {un}n∈N142

weakly converges towards ũ in Lq(Ω) for all q < +∞ if d = 2 and for all q = 2d
d−2 if d > 2, we have143

144

T1 →
∫

Ω

f(ũ− ϕ) dx as n→∞. (17)

Furthermore, we have145

aTn(un, ϕTn , un) =

(
aTn(un, ϕTn , un)−

∫
Ω

Λ∇ϕ·∇̃Dnun dx

)
+

∫
Ω

Λ∇ϕ·∇̃Dnun dx
def
= T2,1 + T2,2.

We observe that T2,1 ≤ εDn(ϕ)‖un‖Tn . Thanks to Proposition 6, ‖un‖Tn is uniformly bounded146

with respect to n. Thus, according to property (P3), T2,1 → 0 as n→∞. The weak convergence147

of {∇̃Dnun}n∈N also leads to T2,2 →
∫

Ω
Λ∇ϕ·∇ũdx as n→∞.148

Let us now consider T2. By Proposition 5, ‖ϕTn‖Tn is uniformly bounded with respect to n;149

since ϕTn obviously converges to ϕ, it is then easy, using Theorem 2, to see that ∇̃DnϕTn weakly150

converges to ∇ϕ. Proceeding in a similar way as for aTn(un, ϕTn , un), we can thus prove that151

aTn(un, ϕTn , ϕTn)→
∫

Ω
Λ∇ϕ·∇ϕdx as n→∞. Therefore,152

T2 →
∫

Ω

Λ∇ϕ·∇(ϕ− ũ) dx as n→∞. (18)

Using the weak convergence of ∇̃Dn(un−ϕTn) in [L2(Ω)]d, we get that lim inf
n→∞

‖∇̃Dn(un−ϕTn)‖[L2(Ω)]d ≥153

‖∇(ũ− ϕ)‖[L2(Ω)]d .154

Plugging (17) and (18) into the right hand side of (16), we conclude that, for all ϕ ∈ D,155

‖∇(ũ− ϕ)‖2[L2(Ω)]d ≤
d

γ1

(∫
Ω

f(ũ− ϕ) dx+

∫
Ω

Λ∇ϕ·∇(ϕ− ũ) dx

)
.

Thanks to the definition of the test space, we can apply this inequality to a sequence {ϕm}m∈N ∈ D156

which tends to u in H1
0 (Ω) and let m→∞; since u solves problem (1), we obtain157

‖∇(ũ− u)‖2[L2(Ω)]d ≤
d

γ1

[∫
Ω

f(ũ− u) dx−
∫

Ω

Λ∇u·∇(ũ− u) dx

]
= 0,

i.e., ũ = u. Due to the uniqueness of the solution of (1), we deduce that the entire sequence158

{un}n∈N converges to u in Lq(Ω) for all q ∈ [1, 2d/(d− 2)) (and weakly in L2d/(d−2)(Ω) if d > 2).159

Note that the order in which the limits for n → ∞ and m → ∞ are taken cannot be exchanged,160

since the sequence {‖(ϕm)Tn‖Tn,I}m∈N is possibly unbounded. This concludes the proof.161
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2.3. Existence of a discrete solution162

In this section, we briefly discuss the existence of discrete solutions for problem (4). Thanks163

to Proposition 6, Remark 3 and the application of Brouwer’s topological degree leads to the164

proposition below whose proof is omitted here (see Proposition 3.4 in [19, 23] for more details).165

Proposition 1 (Existence of a discrete solution). Assume that property (P2) of Hypotheses 1166

holds and that for each n ∈ N, ATn is continuous on HTn(Ω). Then, problem (4) admits at least167

one solution un ∈ HTn(Ω) for each n ∈ N.168

3. Application to some nonlinear finite volume schemes169

An established idea to obtain monotone or extremum-principles-preserving schemes, as those170

developed in [15, 16, 17, 18, 20, 21, 24, 19], is to compute for each interior edge σ ∈ Eint, with171

Tσ = {K,L}, two consistent linear flux approximations F̃K,σ(u) and F̃L,σ(u) depending on the172

unknown u ∈ HT (Ω), and to define the final flux FK,σ(u, u) as a convex combination of these173

fluxes with coefficients also depending on u:174

FK,σ(u, u) = µK,σ(u)F̃K,σ(u)− µL,σ(u)F̃L,σ(u),

with µK,σ(u) ≥ 0, µL,σ(u) ≥ 0 and µK,σ(u) + µL,σ(u) = 1.
(19)

For any K ∈ T and σ ∈ EK ∩ Eint, the linear flux F̃K,σ(u) is built in order to ensure the strong175

consistency, i.e, there exist D ⊂ C0(Ω), a dense subspace of H1
0 (Ω), and 0 < C1 < +∞ depending176

only on the mesh regularity (2), s.t. for all ϕ ∈ D,177

∀K ∈ T , ∀σ ∈ EK ,
∣∣∣F̃K,σ(ϕT )−mσ〈Λ∇ϕ〉K ·nK,σ

∣∣∣ ≤ C1 mσ hD. (20)

In (41) and (42) of Section 4, we specify the choice of the space D related to the strong consistency178

property (20).179

The coefficients µK,σ(u) and µL,σ(u) are chosen to eliminate the ”bad” parts of F̃K,σ(u) and180

F̃L,σ(u), that are responsible for the possible loss of monotonicity. For any K ∈ T , σ ∈ EK ∩ Eint181

and L ∈ TK such that Tσ = {K,L}, we thus get from (19) the function FK,σ(·, ·), defined for all182

(u, v) ∈ [HT (Ω)]2, as183

FK,σ(u, v) = µK,σ(u)F̃K,σ(v)− µL,σ(u)F̃L,σ(v). (21)

It is observed that for any σ ∈ Eint with Tσ = {K,L}, the fluxes are conservative, i.e, FK,σ(u, v) +184

FL,σ(u, v) = 0. Thus, from Section 2, the finite volume scheme (5) defined from the fluxes (19) is185

equivalent to problem (4) with the form aT (8), which is defined from the fluxes (21). Therefore,186

the following corollary can be deduced.187
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Corollary 1. Let {Dn}n∈N be an admissible family of discretizations matching Definition 1 s.t.188

hDn → 0 as n→∞. We have the following results:189

• if, for all n ∈ N, K ∈ Tn and σ ∈ EK , the functions v 7→ FK,σ(v, v), defined by (19), are190

continuous on HTn(Ω) and if the uniform coercivity property (P2) holds, then there exists at191

least one solution un ∈ HTn(Ω) of problem (5);192

• if, in addition, the strong consistency property (20) is satisfied, then the sequence {un}n∈N193

of discrete solutions of problem (5), with numerical fluxes defined by (19), converges to the194

solution u of the continuous problem (1) in Lq(Ω) for all q ∈ [1, 2d/(d− 2)) (and weakly in195

L2d/(d−2)(Ω) if d > 2) as n→∞.196

Proof. To prove this result, we use the equivalence between the problem (5) and (4) with aTn197

defined by (8). By assumption, we get that for any n ∈ N and for all K ∈ Tn and σ ∈ EK , the198

function v 7→ FK,σ(v, v) is continuous. From (8) and (9), we notice that the function ATn , defined199

here by (ATn(v))K = −
∑
σ∈EK FK,σ(v, v) for all K ∈ Tn, is continuous on HTn(Ω). Therefore,200

thanks to Proposition 1, we infer that for each n ∈ N, there exists at least one solution un ∈ HTn(Ω)201

to the problem (5), which gives the first result. The second one is a consequence of Theorem 1202

since203

• the fluxes {F̃K,σ(·)}K∈Tn,σ∈EK are linear on HTn(Ω), which gives (P1),204

• the consistency of the fluxes (P3) can be obtained by proving the strong consistency of the205

fluxes FK,σ given by (21) (see Remark 4 which holds by assumption (20).206

207

4. Construction of nonlinear finite volume schemes208

In the previous section, the proof of the convergence of nonlinear finite volume schemes of type209

(19) has been given. In this section, we describe two schemes existing in the literature with some210

improvements, where the first scheme is monotone (see [15, 16, 17, 18, 21]) and the second one211

satisfies discrete extremum principles (see [19, 24, 25, 20]). Please note that for nonlinear schemes212

monotonicity only guarantees that the scheme is positivity-preserving. The presented schemes213

differ in the choice of the weights µK,σ, µL,σ (19).214

4.1. Consistent flux approximations215

In the following, the fluxes F̃K,σ(u), F̃L,σ(u) are constructed such that (20) holds. The decom-216

position of the conormal, defined as 〈Λ〉KnK,σ, in a basis (xσ′ − xK){σ′∈SK,σ} with coordinates217

(αK,σσ′){σ′∈SK,σ} with SK,σ ⊂ EK is calculated by solving the following optimization problem218
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min
γ≥0, α̃∈R|EK |

κγ +
∑
σ′∈EK

α̃σ′ subject to
〈Λ〉KnK,σ
|〈Λ〉KnK,σ|

=
∑
σ′∈EK

α̃σ′
xσ′ − xK
|xσ′ − xK |∑

σ′∈EK

α̃σ′
|〈Λ〉KnK,σ|
|xσ′ − xK |

≥ δ, −Cα ≤ −γ ≤ α̃σ′ ≤ Cα,
(22)

for given strictly positive parameters δ and Cα. Specifying the final coefficients as219

αK,σσ′
def
= α̃σ′

|〈Λ〉KnK,σ|
|xσ′ − xK |

, (23)

results in the following conormal decomposition220

〈Λ〉KnK,σ =
∑

σ′∈SK,σ

αK,σσ′(xσ′ − xK), (24)

where the face stencil is defined as221

SK,σ
def
= {σ′ ∈ EK | αK,σσ′ 6= 0}. (25)

This decomposition is used to define consistent flux approximations F̃K,σ(u), F̃L,σ(u). The idea of222

formulating the conormal decomposition as an optimization problem has been recently introduced223

in [26].224

Proposition 2. Let D be an element of a family of discretizations matching Definition 1 and let225

αK,σσ′ be calculated from (22)-(23). Then, for any ϕ ∈ C2(T ) ∩ C0(Ω) and K ∈ T , we have the226

following estimate:227 ∣∣∣∣∣∣mσ〈Λ∇ϕ〉K ·nK,σ −mσ

∑
σ′∈SK,σ

αK,σσ′(ϕ(xσ′)− ϕ(xK))

∣∣∣∣∣∣ ≤ C mσ diam(K). (26)

Proof. We observe that for any ϕ ∈ C2(T ) ∩ C0(Ω) and K ∈ T ,228

mσ〈Λ∇ϕ〉K ·nK,σ =
mσ

mK

∫
K

Λ∇ϕ·nK,σ dx

=
mσ

mK

∫
K

Λ(x)(∇ϕ(x)−∇ϕ(xK))·nK,σ dx+ mσ〈Λ〉K∇ϕ(xK)·nK,σ.
(27)

Since K is star-shaped with respect to xK Taylor’s Theorem can be used to infer229 ∣∣∣∣mσ

mK

∫
K

Λ(x)(∇ϕ(x)−∇ϕ(xK))·nK,σ dx

∣∣∣∣ ≤ Cϕβ0 mσ diam(K), (28)

where Cϕ = O(‖ϕ‖C2(K)).230

Let us now estimate the second term in the right hand side of equation (27). Inserting the231

conormal decomposition (24) yields232

mσ∇ϕ(xK)·〈Λ〉KnK,σ = mσ

∑
σ′∈SK,σ

αK,σσ′∇ϕ(xK)·(xσ′ − xK). (29)
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Since K is star-shaped with respect to xK , Taylor’s Theorem can again be used to deduce that233

for all σ′ ∈ SK,σ,234

|ϕ(xσ′)− ϕ(xK)−∇ϕ(xK)·(xσ′ − xK)| ≤ Cϕdiam(K)2. (30)

Owing to (29) and (30), we get235 ∣∣∣∣∣∣mσ∇ϕ(xK)·〈Λ〉KnK,σ −mσ

∑
σ′∈SK,σ

αK,σσ′(ϕ(xσ′)− ϕ(xK))

∣∣∣∣∣∣ ≤ mσ Cϕdiam(K)2
∑

σ′∈SK,σ

|αK,σσ′ |.

(31)

Due to the constraints of the optimization problem (22), we observe that for all σ′ ∈ SK,σ,236

|αK,σσ′ | ≤ Cα
|〈Λ〉KnK,σ|
|xσ′ − xK |

. (32)

We thus deduce from (2) that for all σ′ ∈ SK,σ,237

|αK,σσ′ | ≤ Cαβ0

%1diam(K)
. (33)

Using (31) and (33), it follows that238 ∣∣∣∣∣∣mσ∇ϕ(xK)·〈Λ〉KnK,σ −mσ

∑
σ′∈SK,σ

αK,σσ′(ϕ(xσ′)− ϕ(xK))

∣∣∣∣∣∣ ≤ |EK |mσ CϕCα
β0

%1
diam(K).

(34)

Then, including (28) and (34) the following desired estimate is obtained from (27)239 ∣∣∣∣∣∣mσ〈Λ∇ϕ〉K ·nK,σ −mσ

∑
σ′∈SK,σ

αK,σσ′(ϕ(xσ′)− ϕ(xK))

∣∣∣∣∣∣ ≤ Cϕβ0

(
1 +

Cα|EK |
%1

)
mσ diam(K),

(35)

which completes the proof.240

Corollary 2 (Strong consistency). Let D be an element of a family of discretizations matching241

Definition 1. Let αK,σσ′ be calculated from (22)-(23). Let D be a dense subspace of H1
0 (Ω) s.t.242

D ⊂ C2(T ) ∩ C0(Ω). For σ ∈ E, let Iσ ∈ L(HT (Ω);P0(σ)), be a trace reconstruction operator243

such that for all ϕ ∈ D244

|IσϕT − ϕ(xσ)| ≤ %h2
D, (36)

where % > 0 only depends on the mesh regularities (2). Then, the linear fluxes defined as245

F̃K,σ(v)
def
= mσ

∑
σ′∈SK,σ

αK,σσ′(Iσ′v − vK), ∀ v ∈ HT (Ω),K ∈ T , σ ∈ EK , (37)

satisfy the strong consistency assumption (20).246

Proof. Thanks to Proposition 2, we obtain that for all ϕ ∈ D247 ∣∣∣mσ〈Λ∇ϕ〉K ·nK,σ − F̃K,σ(ϕT )
∣∣∣ ≤ C mσ diam(K)

+ mσ max
σ′∈SK,σ

|Iσ′ϕT − ϕ(xσ′)|
∑

σ′∈SK,σ

|αK,σσ′ |. (38)
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However, thanks to (33), we have
∑

σ′∈SK,σ

|αK,σσ′ | ≤ Cα|EK |β0

%1diam(K)
and then from (38) we deduce248

that249 ∣∣∣mσ〈Λ∇ϕ〉K ·nK,σ − F̃K,σ(ϕT )
∣∣∣ ≤ C mσ diam(K)

+
Cα|EK |β0

%1

mσ

diam(K)
max

σ′∈SK,σ
|Iσ′ϕT − ϕ(xσ′)|.

(39)

On one hand, for any K ∈ T , we have diam(K) ≤ hD. On the other hand, thanks to (2), for any250

K ∈ T , we get
1

diam(K)
≤ 1

%3hD
. Therefore from (39), we infer251

∣∣∣mσ〈Λ∇ϕ〉K ·nK,σ − F̃K,σ(ϕT )
∣∣∣ ≤ C mσ hD

+
Cα|EK |β0

%1%3

mσ

hD
max

σ′∈SK,σ
|Iσ′ϕT − ϕ(xσ′)|.

(40)

The strong consistency of the fluxes follows due to assumption (36).252

4.2. Choice of trace reconstruction operators253

With the result obtained in the last section, we now propose choices for the space D and the254

trace reconstruction operators Iσ ∈ L(HT (Ω);P0(σ)). The first choice consists in taking for all255

u ∈ HT (Ω), σ ∈ Eint:256

D = C∞c (Ω),

Iσu =
∑
K∈Bσ

βK,σuK ,
(41)

where Bσ is a subset of T with card(Bσ) ≥ d, and (βK,σ)K∈Bσ is a family of nonnegative real257

numbers such that
∑
K∈Bσ

βK,σ = 1 and xσ =
∑
K∈Bσ

βK,σxK . Both choices in (41) ensure that258

Corollary 1 is satisfied for the nonlinear finite volume schemes considered in Section 3 with the259

assumption that the permeability Λ belongs to L∞(Ω). Our result is thus an improvement of the260

convergence result obtained in [19] which requires Λ to be piecewise Lipschitz-continuous on Ω.261

262

However, the choice of a convex combination made in (41), and in [19] as well, does not allow263

us to retrieve exactly piecewise linear solutions of problem (1) for heterogeneous permeabilities Λ264

which are cell-wise C2 on Ω. This choice may lead to non-physical solutions of problem (1) for265

this kind of permeability functions. To handle these cases, we propose a second choice for D and266

the trace reconstruction operators. To that purpose, we make the following hypotheses.267

Hypotheses 2. (Q1) PΩ
def
= {Ωi}i=1...NΩ

is a finite partition of Ω into open connected disjoint268

polygonal subsets,269

(Q2) Λ is a symmetric tensor-valued function such that Λ|Ωi ∈ [C2(Ωi)]
d×d for all i = 1 . . . NΩ,270

(Q3) T is compatible with PΩ (each cell is contained in one element of the partition PΩ).271
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We then suggest, with these additional assumptions, to take, for all u ∈ HT (Ω), σ ∈ Eint:272

D = Q,

Iσu = ωKuK + ωLuL,
(42)

where Q is defined and proved to be dense in H1
0 (Ω), as described in Proposition 3, and ωK and273

ωL given below, are the coefficients defining the harmonic averaging interpolator introduced in274

[27]:275

ωK =
dL,στK,σ

dL,στK,σ + dK,στL,σ
, ωL =

dK,στL,σ
dL,στK,σ + dK,στL,σ

,

τK,σ = nK,σ〈Λ〉KnK,σ, τL,σ = nL,σ〈Λ〉LnL,σ,

xσ = ωKxK + ωLxL +
dK,σdL,σ

dL,στK,σ + dK,στL,σ
(〈Λ〉K − 〈Λ〉L)nK,σ.

With the same ideas as the ones used for the proof of Lemma 7 in [4] and the additional Hypotheses276

2, the property (36) is satisfied with the choices (42).277

The previous strategies can be generalized with the following reconstruction operator278

Iσu =
∑
M∈Iσ

ωM,σuM ,
∑
M∈Iσ

ωM,σ = 1, ωM,σ ≥ 0, (43)

with interpolation index set Iσ. It is assumed that ωM,σ = 0 if M 6∈ Iσ. In the next sections,279

two nonlinear schemes are derived by using the consistent flux approximations (37) with trace280

reconstruction operators (43).281

4.3. Nonlinear Two-Point Flux Approximation282

In this section, a nonlinear two-point flux approximation (NLTPFA) is derived, using concepts283

presented in [16, 17, 18, 21]. Inserting (37) into (21), using the reconstruction operator (43),284

reordering the terms and using the fact that
∑
M∈Iσ

ωM = 1 yield:285

FK,σ(u, v) = tL,σ(u)vL − tK,σ(u)vK − (µL,σ(u)λL,σ(v)− µK,σ(u)λK,σ(v))︸ ︷︷ ︸
def
=RK,σ(u,v)

, (44)

with the transmissibilities286

tK,σ(u) = mσ

µK,σ(u)
∑

σ′∈SK,σ

∑
M∈{Iσ′\{K}}

αK,σσ′ωM,σ′ + µL,σ(u)
∑

σ′∈SL,σ

∑
M∈{Iσ′∩{K}}

αL,σσ′ωM,σ′

 ,

tL,σ(u) = mσ

µL,σ(u)
∑

σ′∈SL,σ

∑
M∈{Iσ′\{L}}

αL,σσ′ωM,σ′ + µK,σ(u)
∑

σ′∈SK,σ

∑
M∈{Iσ′∩{L}}

αK,σσ′ωM,σ′

 ,

(45)

and287

λK,σ(v)
def
= mσ

∑
σ′∈SK,σ

∑
M∈{Iσ′\{K,L}}

αK,σσ′ωM,σ′vM ,

λL,σ(v)
def
= mσ

∑
σ′∈SL,σ

∑
M∈{Iσ′\{K,L}}

αL,σσ′ωM,σ′vM .
(46)
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In order to obtain a nonlinear two-point flux approximation, the following weights are considered:288

289

µK,σ(u) = 0.5, µL,σ(u) = 0.5, if λL,σ(u) = λK,σ(u) = 0,

µK,σ(u) =
|λL,σ(u)|

|λK,σ(u)|+ |λL,σ(u)|
, µL,σ(u) =

|λK,σ(u)|
|λK,σ(u)|+ |λL,σ(u)|

, otherwise.
(47)

Therefore, from (44), the flux FK,σ(u, u) reads:290

FK,σ(u, u) = tL,σ(u)uL − tK,σ(u)uK −RK,σ(u, u). (48)

Under the assumption that λL,σ(u)λK,σ(u) ≥ 0, it is inferred from (48) that:291

FK,σ(u, u) = tL,σ(u)uL − tK,σ(u)uK . (49)

By virtue of (49), we thus get a nonlinear two-point flux approximation. However, to get the292

convergence of the finite volume scheme defined by the fluxes (48) using Corollary 1, the function293

u 7→ FK,σ(u, u) must be continuous, which is not a priori the case. The problem comes from the294

definition (47) of the function u 7→ µK,σ(u) for which discontinuities can appear. Thus, in order295

to guarantee the continuity of the function u 7→ FK,σ(u, u), we finally choose the weights as:296

µK,σ(u) =
|λL,σ(u)|+ ε

|λK,σ(u)|+ |λL,σ(u)|+ 2ε
, µL,σ(u) =

|λK,σ(u)|+ ε

|λK,σ(u)|+ |λL,σ(u)|+ 2ε
, (50)

with ε > 0 such that 0 < ε ≤ hDmin
σ∈E

mσ. Thus, the convergence of the finite volume scheme297

defined by the fluxes (48) with weights (50) is obtained thanks to Corollary 1.298

Let us now discuss the monotonicity of the finite volume scheme defined by the fluxes (48).299

First, we observe that, under some conditions, we can rewrite the flux FK,σ(u, u) given by the300

expression (48) to obtain a nonlinear two-point flux approximation. Indeed,301

• if we have302

RK,σ(u, u) = 0, (51)

then the flux FK,σ(u, u) given by (48) becomes:303

FK,σ(u, u) = tL,σ(u)uL − tK,σ(u)uK ;

• if we have304

RK,σ(u, u) > 0 and uK 6= 0, (52)

then the flux FK,σ(u, u) given by (48) can be rewritten as:305

FK,σ(u, u) = tL,σ(u)uL −
(
tK,σ(u) +

RK,σ(u, u)

uK

)
uK .

• if we have306

RK,σ(u, u) < 0 and uL 6= 0, (53)
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then the flux FK,σ(u, u) given by (48) can be rewritten as:307

FK,σ(u, u) =

(
tL,σ(u)− RK,σ(u, u)

uL

)
uL − tK,σ(u)uK .

Furthermore, under the assumption that308

λL,σ(u)λK,σ(u) ≥ 0, (54)

the flux FK,σ(u, u) defined by (48) with weights (50) can be rewritten as:309

FK,σ(u, u) = tL,σ(u)uL − tK,σ(u)uK − ε
λL,σ(u)− λK,σ(u)

|λK,σ(u)|+ |λL,σ(u)|+ 2ε︸ ︷︷ ︸
def
= EK,σ(u)

, (55)

where we observe that310

|EK,σ(u)| ≤ ε. (56)

Thus, thanks to Equation (55) and inequality (56), it is inferred that under the assumption that311

λL,σ(u)λK,σ(u) ≥ 0, the flux FK,σ(u, u) defined by (48) with weights (50) is close to a nonlinear312

two-point flux approximation provided that ε is sufficiently small.313

Thus, for the monotonicity property of the scheme, we get the following result:314

Provided that for all σ ∈ Eint with Tσ = {K,L}, one of these four conditions (51),(52),(53) or (54)315

holds, and the values uK as well as the αK and ωK coefficients are nonnegative, then the resulting316

discretization matrix is an M-matrix (for sufficiently small ε for the case that the condition (54)317

is used).318

If in addition to that, the source term f is nonnegative, the positivity-preservation of the scheme319

using a Picard method can be proven (see [17]).320

321

4.4. Nonlinear Multi-Point Flux Approximation322

In this section, we mainly follow ideas presented in [19, 24, 25]. For the derivation of a nonlinear323

multi-point flux approximation (NLMPFA), the fluxes (37) are split as follows324

F̃K,σ(v)
def
= F̃

(1)
K,σ(v) + F̃

(2)
K,σ(v),

F̃L,σ(v)
def
= F̃

(1)
L,σ(v) + F̃

(2)
L,σ(v),

(57)

with325

F̃
(1)
K,σ(v) = mσ αK,σσωL,σ(vL − vK),

F̃
(1)
L,σ(v) = mσ αL,σσωK,σ(vK − vL),

F̃
(2)
K,σ(v) = mσ αK,σσ

∑
M∈{Iσ\{L}}

ωM,σ(vM − vK) +
∑

σ′∈{SK,σ\{σ}}

mσ αK,σσ′(Iσ′v − vK),

F̃
(2)
L,σ(v) = mσ αL,σσ

∑
M∈{Iσ\{K}}

ωM,σ(vM − vL) +
∑

σ′∈{SL,σ\{σ}}

mσ αL,σσ′(Iσ′v − vL).
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The weights are chosen as326

µK,σ = µL,σ = 0.5, if F̃
(2)
K,σ = F̃

(2)
L,σ = 0,

µK,σ =
|F̃ (2)
L,σ|

|F̃ (2)
K,σ|+ |F̃

(2)
L,σ|

, µL,σ =
|F̃ (2)
K,σ|

|F̃ (2)
K,σ|+ |F̃

(2)
L,σ|

, otherwise.
(58)

This choice results in the final flux approximations327

FK,σ(u, u) = µK,σ(u)F̃
(1)
K,σ(u)− µL,σ(u)F̃

(1)
L,σ(u) + µK,σ(u)

(
1− sign

(
F̃

(2)
K,σ(u)F̃

(2)
L,σ(u)

))
F̃

(2)
K,σ(u),

FL,σ(u, u) = µL,σ(u)F̃
(1)
L,σ(u)− µK,σ(u)F̃

(1)
K,σ(u) + µL,σ(u)

(
1− sign

(
F̃

(2)
K,σ(u)F̃

(2)
L,σ(u)

))
F̃

(2)
L,σ(u),

(59)

where the flux conservation FK,σ(u, u) + FL,σ(u, u) = 0 is obtained. Under the assumption of328

nonnegative coefficients ωM,σ, αK,σσ′ , discrete extremum principles can be proven for this scheme329

(see for instance [19, 20]).330

Again, the function u 7→ FK,σ(u, u) defined by (59) is not a priori continuous when F̃
(2)
K,σ(u) =331

F̃
(2)
L,σ(u) = 0. To guarantee the continuity, a splitting of the factors αK,σσωL,σ and αL,σσωK,σ is332

carried out in the following way333

αK,σσωL,σ = βσ + (αK,σσωL,σ − βσ),

αL,σσωK,σ = βσ + (αL,σσωK,σ − βσ),

with βσ = min(αK,σσωL,σ, αL,σσωK,σ). Thus, the fluxes F̃K,σ(u), F̃L,σ(u) from (57) are rewritten334

as follows335

F̃K,σ(v)
def
= F̃

(1)
K,σ(v) + F̃

(2)
K,σ(v),

F̃L,σ(v)
def
= F̃

(1)
L,σ(v) + F̃

(2)
L,σ(v),

(60)

with336

F̃
(1)
K,σ(v) = mσ βσ(vL − vK),

F̃
(1)
L,σ(v) = −F̃ (1)

K,σ(v),

F̃
(2)
K,σ(v) = mσ(αK,σσωL,σ − βσ)(vL − vK) + mσ αK,σσ

∑
M∈{Iσ\{L}}

ωM,σ(vM − vK)

+
∑

σ′∈{SK,σ\{σ}}

mσ αK,σσ′(Iσ′v − vK),

F̃
(2)
L,σ(v) = mσ(αL,σσωK,σ − βσ)(vK − vL) + mσ αL,σσ

∑
M∈{Iσ\{K}}

ωM,σ(vM − vL)

+
∑

σ′∈{SL,σ\{σ}}

mσ αL,σσ′(Iσ′v − vL).

The weights, µK,σ and µL,σ, and the fluxes, FK,σ(u, u) and FL,σ(u, u), are still defined by (58)337

and (59), respectively. Now, let us consider the case where F̃
(2)
K,σ(u) = F̃

(2)
L,σ(u) = 0 for which the338

functions µK,σ and µL,σ are not continuous. However, since F̃
(1)
L,σ(v) = −F̃ (1)

K,σ(v), the final flux339
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does not depend on these functions. In fact,340

FK,σ(u, u) = µK,σ(u)F̃
(1)
K,σ(u)− µL,σ(u)F̃

(1)
L,σ(u)

= (µK,σ(u) + µL,σ(u))F̃
(1)
K,σ(u)

= F̃
(1)
K,σ(u),

which means that for all K ∈ T , σ ∈ EK , the function u 7→ FK,σ(u, u) is continuous on HT (Ω).341

The above flux splitting only makes sense if the coefficients αK,σσ, αL,σσ are positive. This is done342

by adding the constraints343

αK,σσ ≥ δα, αL,σσ ≥ δα, (61)

to the optimization problem (22). Thus, the convergence of this scheme is obtained thanks to344

Corollary 1.345

5. Numerical results346

In this section, the behavior of the above mentioned nonlinear finite volume schemes is in-347

vestigated and compared to linear schemes. The NLTPFA scheme is given by equation (48) with348

weights (50), the NLMPFA scheme by equation (59), (60), the weights (58) and the additional con-349

straints (61) for the conormal decomposition. The scheme with fluxes (37) and constant weights350

µK,σ = µL,σ = 0.5, which results in a linear scheme, is denoted as AvgMPFA . In Section 5.1,351

the convergence behavior of these schemes is analyzed for a mildly and highly anisotropic test352

case. In Sections 5.2 and 5.3, we compare these schemes to the Box method [28, 29] that uses353

finite-element basis functions on each cell to calculate fluxes over sub-volume faces. Further, in354

Section 5.2 discrete extremum principles are investigated and in Section 5.3 benchmark test cases355

are considered. So far, the reconstruction operator Iσ has not been specified. From now on, the356

harmonic averaging interpolator (42) is used.357

For measuring the coercivity of the scheme, the following estimate is defined358

eT (u, v)
def
=

aT (u, v, v)

‖v‖T
. (62)

The impact of the term RK,σ(u, v) in the NLTPFA expression is quantified with359

eR(u, v)
def
= max

K∈T ,σ∈EK
|RK,σ(u, v)|. (63)

For simplicity, we define eT ,n
def
= eT (un, un), eT ,n

def
= eT (un, un − u), and analogously eR,n, eR,n.360

All simulations are performed using the open-source simulator DuMux [30], which comes in361

the form of an additional DUNE module [31]. Newton’s method is used for solving the occuring362

nonlinear systems of equation. The nonlinear iteration loop is stopped if the absolute residual363
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is below 10−5. The optimization problem (22) is solved using a Primal-Dual Simplex Method364

provided by the open-source library GNU Linear Programming Kit1 (GLPK).365

5.1. Convergence rates366

Within this section, the computational domain is chosen as Ω = [0, 1]2. Furthermore, Dirichlet367

conditions are set on the whole boundary consistent with the exact solution. The grids that are368

used to analyze the convergence behavior of the schemes are shown in Figure 2. These meshes are369

refined such that the pattern remains unaffected.370

Figure 2: Grids used for the convergence tests. From left to right: non-matching, randomly distorted and twisted

grid.

The first test case analyzes the convergence rates for a homogeneous mildly anisotropic tensor371

372

Λ =

1.0 0.5

0.5 1.0

 , (64)

with the exact solution u(x, y) = 1 + sin(πx) sin(πy) and the corresponding source term as f =373

−∇·(Λ ∇u).374

Table 1–3 list the error norms for the NLTPFA, NLMPFA and AvgMPFA schemes. It is ob-375

served that all schemes converge approximately with second order in the L2-norm and at least376

first order in the H1-norm. Furthermore, the coercivity estimates eT ,n, eT ,n seem to be bounded.377

The number of Newton iterations are quite small for the NLTPFA scheme. The Newton method378

converges within three iterations, whereas the NLMPFA method needs approximately 3− 6 iter-379

ations.380

In the next example, the tensor is changed to investigate the behavior for high anisotropy381

ratios.382

Λ(x, y) =
1

x2 + y2

 βx2 + y2 (β − 1)xy

(β − 1)xy x2 + βy2

 , (65)

1http://www.gnu.org/software/glpk/glpk.html
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Table 1: Discrete error norms, convergence rates (cr) and number of nonlinear iterations (nIt) for the mild

anisotropic test case on non-matching grids.

scheme n ‖un − u‖L2 cr ‖un − u‖T cr eT ,n eT ,n nIt hD

1 1.90e-02 0.00 1.45e-01 0.00 2.44 1.09 3 5.59e-01

2 6.50e-03 1.54 8.42e-02 0.78 2.46 1.06 3 2.80e-01

3 1.78e-03 1.87 4.28e-02 0.97 2.46 1.03 3 1.40e-01

NLTPFA 4 4.55e-04 1.97 2.13e-02 1.01 2.47 1.01 3 6.99e-02

5 1.14e-04 2.00 1.05e-02 1.02 2.47 1.00 2 3.49e-02

6 2.84e-05 2.00 5.18e-03 1.02 2.47 1.00 2 1.75e-02

7 7.08e-06 2.00 2.57e-03 1.01 2.47 1.00 2 8.73e-03

1 2.53e-02 0.00 2.06e-01 0.00 2.42 1.11 4 5.59e-01

2 8.57e-03 1.56 1.26e-01 0.71 2.47 1.12 5 2.80e-01

3 2.09e-03 2.04 5.55e-02 1.18 2.47 1.07 5 1.40e-01

NLMPFA 4 4.95e-04 2.08 2.47e-02 1.17 2.47 1.04 5 6.99e-02

5 1.19e-04 2.06 1.14e-02 1.12 2.47 1.02 4 3.49e-02

6 2.90e-05 2.03 5.41e-03 1.07 2.47 1.01 5 1.75e-02

7 7.16e-06 2.02 2.63e-03 1.04 2.47 1.01 4 8.73e-03

1 1.80e-02 0.00 1.37e-01 0.00 2.45 1.08 1 5.59e-01

2 6.43e-03 1.49 8.19e-02 0.74 2.46 1.06 1 2.80e-01

3 1.76e-03 1.87 4.14e-02 0.99 2.47 1.02 1 1.40e-01

AvgMPFA 4 4.50e-04 1.96 2.07e-02 1.00 2.47 1.01 1 6.99e-02

5 1.13e-04 1.99 1.03e-02 1.01 2.47 1.00 1 3.49e-02

6 2.83e-05 2.00 5.13e-03 1.00 2.47 1.00 1 1.75e-02

7 7.07e-06 2.00 2.56e-03 1.00 2.47 1.00 1 8.73e-03

with β = 10−3. The exact solution is the same than in the previous example. The anisotropy383

ratio is given as 1
β . The integrated source term and the averaged tensor 〈Λ〉K are calculated384

using a fifth-order quadrature rule. For this test case, faces exist where the conormal cannot be385

decomposed with only positive coefficients. Negative coefficients especially occur on the randomly386

distorted grid. Therefore, the calculation of eR,n, eR,n is included. Please note that these values387

are rounded to the eighth decimal place.388

Table 4–6 list the error norms of the NLTPFA, NLMPFA and AvgMPFA schemes for the high389

anisotropy test case. It is observed that all schemes converge approximately with order 1.5−2.0 in390

the L2-norm and order 0.7−2.0 in the H1-norm. Furthermore, the coercivity estimates eT ,n, eT ,n391

seem to be bounded. However, the behavior of eT ,n is unclear for the non-matching grid. The392

number of Newton iterations are again quite small for the NLTPFA scheme. The Newton method393
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Table 2: Discrete error norms, convergence rates (cr) and number of nonlinear iterations (nIt) for the mild

anisotropic test case on randomly distorted grids.

scheme n ‖un − u‖L2 cr ‖un − u‖T cr eT ,n eT ,n nIt hD

1 2.26e-02 0.00 1.71e-01 0.00 2.77 0.97 3 4.18e-01

2 7.27e-03 2.02 8.88e-02 1.17 2.52 1.08 3 2.38e-01

3 2.10e-03 1.77 3.61e-02 1.28 2.54 1.06 2 1.18e-01

NLTPFA 4 6.12e-04 2.04 1.77e-02 1.17 2.51 1.07 2 6.46e-02

5 1.59e-04 1.96 9.10e-03 0.97 2.51 1.05 2 3.25e-02

6 4.05e-05 1.97 4.52e-03 1.01 2.50 1.07 2 1.63e-02

7 1.08e-05 1.93 2.27e-03 1.01 2.50 1.07 2 8.18e-03

1 3.14e-02 0.00 2.53e-01 0.00 2.74 0.98 4 4.18e-01

2 8.05e-03 2.42 1.03e-01 1.60 2.49 1.01 5 2.38e-01

3 2.21e-03 1.84 4.53e-02 1.17 2.52 1.00 6 1.18e-01

NLMPFA 4 1.10e-03 1.15 2.16e-02 1.23 2.50 1.01 6 6.46e-02

5 2.95e-04 1.92 1.01e-02 1.10 2.50 1.03 6 3.25e-02

6 8.36e-05 1.82 4.80e-03 1.08 2.50 1.05 6 1.63e-02

7 2.23e-05 1.92 2.32e-03 1.06 2.50 1.06 6 8.18e-03

1 2.69e-02 0.00 1.93e-01 0.00 2.82 0.95 1 4.18e-01

2 8.84e-03 1.98 9.16e-02 1.32 2.54 1.03 1 2.38e-01

3 2.45e-03 1.83 3.58e-02 1.34 2.54 1.03 1 1.18e-01

AvgMPFA 4 6.92e-04 2.10 1.74e-02 1.19 2.51 1.06 1 6.46e-02

5 1.73e-04 2.01 8.86e-03 0.98 2.51 1.06 1 3.25e-02

6 4.41e-05 1.98 4.40e-03 1.01 2.50 1.07 1 1.63e-02

7 1.17e-05 1.93 2.21e-03 1.01 2.50 1.07 1 8.18e-03

converges within three iterations, whereas, the NLMPFA needs more iterations. In particular for394

the randomly distorted grid, the number of Newton iterations increases with grid refinement for395

the NLMPFA scheme. Moreover, the estimates eR,n, eR,n are quite small and bounded, such that396

this term is in O(1).397

In the last examples, it has been observed that the convergence behavior of the NLTPFA,398

NLMPFA and AvgMPFA schemes is quite similar. Furthermore, the schemes seem to be coercive399

for these test cases. The main drawback of the NLMPFA scheme is the fact that it requires more400

Newton iterations, and that the number of iterations partly depends on the discretization length401

hD.402
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Table 3: Discrete error norms, convergence rates (cr) and number of nonlinear iterations (nIt) for the mild

anisotropic test case on twisted grids.

scheme n ‖un − u‖L2 cr ‖un − u‖T cr eT ,n eT ,n nIt hD

1 1.70e-02 0.00 1.32e-01 0.00 2.74 0.95 3 4.26e-01

2 8.21e-03 1.24 8.14e-02 0.82 2.57 0.97 3 2.37e-01

3 3.03e-03 1.46 3.11e-02 1.41 2.49 0.76 2 1.20e-01

NLTPFA 4 8.95e-04 1.79 9.51e-03 1.73 2.46 0.64 2 6.06e-02

5 2.38e-04 1.92 2.57e-03 1.89 2.45 0.59 2 3.04e-02

6 6.10e-05 1.97 6.57e-04 1.97 2.45 0.57 2 1.52e-02

7 1.54e-05 1.99 1.65e-04 1.99 2.45 0.57 2 7.60e-03

1 2.31e-02 0.00 1.93e-01 0.00 2.66 1.02 3 4.26e-01

2 6.88e-03 2.07 8.48e-02 1.40 2.52 1.00 5 2.37e-01

3 4.83e-03 0.52 5.88e-02 0.54 2.50 0.70 5 1.20e-01

NLMPFA 4 1.63e-03 1.59 2.74e-02 1.12 2.47 0.57 5 6.06e-02

5 4.35e-04 1.91 9.87e-03 1.48 2.45 0.55 5 3.04e-02

6 1.12e-04 1.96 3.34e-03 1.56 2.45 0.60 5 1.52e-02

7 2.97e-05 1.92 1.12e-03 1.58 2.45 0.66 5 7.60e-03

1 2.05e-02 0.00 1.43e-01 0.00 2.78 0.91 1 4.26e-01

2 9.94e-03 1.23 8.66e-02 0.86 2.59 0.91 1 2.37e-01

3 3.78e-03 1.42 3.56e-02 1.31 2.50 0.69 1 1.20e-01

AvgMPFA 4 1.13e-03 1.77 1.15e-02 1.66 2.46 0.56 1 6.06e-02

5 3.00e-04 1.91 3.17e-03 1.86 2.45 0.51 1 3.04e-02

6 7.65e-05 1.97 8.15e-04 1.96 2.45 0.49 1 1.52e-02

7 1.93e-05 1.99 2.05e-04 1.99 2.45 0.49 1 7.60e-03

5.2. Discrete extremum principles403

The following two examples investigate whether the schemes satisfy discrete extremum princi-404

ples. In the first example, the tensor (65) is again considered. The boundary conditions are u = 0405

on ∂Ω and Ω = [0, 1]2 is discretized with a regular cartesian grid. The source term is f = 10406

in (0.5, 1)2 and f = 0 elsewhere. The weak solution of this test problem is positive within the407

domain, because of the non-negativity of the source term and the chosen boundary conditions.408

Figure 3 shows the numerical results of the Box, AvgMPFA, NLTPFA and NLMPFA schemes.409

It can be seen that the linear schemes produce unphysical negative solution values, whereas the410

undershoots produced by the nonlinear schemes are in the range of the solver tolerance.411

The next example investigates another test case without a source term. The domain and the412

grid are shown in Figure 4, with an inner and an outer boundary. The Dirichlet values u = 105 and413
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Table 4: Discrete error norms, convergence rates (cr) and number of nonlinear iterations (nIt) for the high anisotropy

test case on non-matching grids.

scheme n ‖un − u‖L2 cr ‖un − u‖T cr eT ,n eT ,n eR,n eR,n nIt

1 5.99e-02 0.00 5.20e-01 0.00 1.01 0.51 0 2.34e-02 3

2 1.76e-02 1.76 2.62e-01 0.99 0.70 0.40 0 1.23e-02 3

3 6.45e-03 1.45 1.61e-01 0.70 0.40 0.28 0 4.23e-03 3

NLTPFA 4 2.35e-03 1.46 1.10e-01 0.55 0.28 0.18 0 1.44e-03 3

5 8.00e-04 1.55 7.35e-02 0.59 0.24 0.11 0 4.45e-04 3

6 2.56e-04 1.64 4.68e-02 0.65 0.23 0.08 0 1.26e-04 3

7 7.81e-05 1.71 2.84e-02 0.72 0.23 0.05 0 3.30e-05 3

1 6.81e-02 0.00 5.98e-01 0.00 1.01 0.49 0 0 6

2 2.05e-02 1.74 3.24e-01 0.88 0.71 0.41 0 0 6

3 6.78e-03 1.59 1.80e-01 0.85 0.41 0.29 0 0 10

NLMPFA 4 2.41e-03 1.49 1.17e-01 0.63 0.28 0.18 0 0 12

5 8.20e-04 1.56 7.65e-02 0.61 0.24 0.11 0 0 9

6 2.62e-04 1.64 4.82e-02 0.66 0.23 0.08 0 0 13

7 7.95e-05 1.72 2.91e-02 0.73 0.23 0.05 0 0 18

1 5.70e-02 0.00 4.94e-01 0.00 1.00 0.51 0 0 1

2 1.67e-02 1.77 2.52e-01 0.97 0.70 0.42 0 0 1

3 6.23e-03 1.42 1.59e-01 0.67 0.40 0.28 0 0 1

AvgMPFA 4 2.34e-03 1.41 1.11e-01 0.51 0.28 0.17 0 0 1

5 8.10e-04 1.53 7.51e-02 0.57 0.24 0.11 0 0 1

6 2.61e-04 1.63 4.78e-02 0.65 0.23 0.07 0 0 1

7 7.93e-05 1.72 2.90e-02 0.72 0.23 0.05 0 0 1

u = 0 are set at the inner and outer boundaries, respectively. Therefore, the solution is expected414

to be within these bounds.415

Figure 5 shows the numerical solutions of the Box, AvgMPFA, NLTPFA and NLMPFA schemes416

on a three times refined grid. All schemes fulfill the maximum principle, whereas the minimum417

principle is violated by the linear schemes. The undershoots of the AvgMPFA scheme are above418

4% and those of the Box scheme above 2%.419

The small negative undershoots of the nonlinear schemes are caused by Newton’s method.420

These undershoots can be prevented by using other nonlinear solvers such as Picard’s method or421

enhanced solvers [32].422

The above test cases exhibit how nonlinear schemes are capable to reproduce physical solu-423

tions, whereas linear schemes can produce negative values. When solving highly complex partial424
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Table 5: Discrete error norms, convergence rates (cr) and number of nonlinear iterations (nIt) for the high anisotropy

test case on randomly distorted grids.

scheme n ‖un − u‖L2 cr ‖un − u‖T cr eT ,n eT ,n eR,n eR,n nIt

1 7.26e-02 0.00 5.88e-01 0.00 1.36 0.52 0 5.61e-02 3

2 2.97e-02 1.59 4.19e-01 0.60 1.37 0.37 0.45 4.90e-02 3

3 8.66e-03 1.76 2.03e-01 1.03 1.46 0.49 0 8.06e-03 2

NLTPFA 4 9.37e-03 -0.13 3.55e-01 -0.93 1.40 0.27 0.79 1.77e-02 2

5 3.63e-03 1.38 2.59e-01 0.46 1.42 0.22 1.15 1.39e-02 2

6 1.12e-03 1.69 1.34e-01 0.95 1.44 0.30 0.84 5.23e-03 2

7 2.83e-04 2.01 6.81e-02 0.99 1.44 0.30 1.25 1.71e-03 2

1 9.87e-02 0.00 7.63e-01 0.00 1.29 0.47 0 0 5

2 6.07e-02 0.86 7.61e-01 0.00 1.19 0.21 0 0 7

3 1.62e-02 1.88 2.49e-01 1.59 1.40 0.37 0 0 9

NLMPFA 4 2.84e-02 -0.93 6.24e-01 -1.52 1.27 0.22 0 0 16

5 1.09e-02 1.40 3.83e-01 0.71 1.37 0.18 0 0 18

6 3.83e-03 1.50 1.80e-01 1.09 1.42 0.24 0 0 24

7 1.30e-03 1.58 8.30e-02 1.13 1.43 0.26 0 0 54

1 6.60e-02 0.00 5.22e-01 0.00 1.58 0.60 0 0 1

2 3.13e-02 1.33 3.97e-01 0.49 1.42 0.55 0 0 1

3 1.38e-02 1.16 2.57e-01 0.62 1.49 0.91 0 0 1

AvgMPFA 4 9.14e-03 0.69 3.35e-01 -0.44 1.43 1.24 0 0 1

5 3.32e-03 1.47 2.31e-01 0.54 1.44 0.49 0 0 1

6 1.36e-03 1.29 1.42e-01 0.70 1.44 0.77 0 0 1

7 3.93e-04 1.81 7.17e-02 1.00 1.44 0.38 0 0 1

differential equations, where secondary variables non-linearly depend on primary variables, such425

negative values can strongly influence the efficiency of the scheme, in terms of linear and nonlinear426

solver convergence.427

5.3. Benchmark examples428

In this last section, three-dimensional benchmark test cases are considered. The first example429

investigates the linearity-preservation property of the schemes. The considered domain and the430

grid are shown in Figure 6 (right). The domain consists of two sub-domains Ω1 and Ω2. The431

23



Table 6: Discrete error norms, convergence rates (cr) and number of nonlinear iterations (nIt) for the high anisotropy

test case on twisted grids.

scheme n ‖un − u‖L2 cr ‖un − u‖T cr eT ,n eT ,n eR,n eR,n nIt

1 5.15e-02 0.00 4.14e-01 0.00 1.59 0.52 0 4.66e-02 3

2 1.87e-02 1.73 2.29e-01 1.01 1.44 0.43 0.23 2.67e-02 3

3 1.42e-02 0.41 2.30e-01 -0.01 1.40 0.32 0 1.30e-02 3

NLTPFA 4 6.65e-03 1.11 1.20e-01 0.95 1.41 0.33 0 3.23e-03 2

5 2.20e-03 1.60 4.25e-02 1.50 1.41 0.33 0 6.69e-04 2

6 6.08e-04 1.85 1.21e-02 1.81 1.41 0.33 0 1.20e-04 2

7 1.57e-04 1.95 3.21e-03 1.92 1.41 0.32 0 1.67e-05 2

1 7.36e-02 0.00 5.44e-01 0.00 1.59 0.48 0 0 6

2 3.27e-02 1.38 4.09e-01 0.48 1.39 0.31 0 0 6

3 2.69e-02 0.29 4.19e-01 -0.04 1.36 0.24 0 0 7

NLMPFA 4 1.49e-02 0.87 2.55e-01 0.73 1.38 0.23 0 0 14

5 6.04e-03 1.31 1.08e-01 1.25 1.40 0.23 0 0 14

6 2.25e-03 1.43 4.49e-02 1.26 1.41 0.19 0 0 9

7 8.20e-04 1.46 2.04e-02 1.14 1.41 0.14 0 0 13

1 5.79e-02 0.00 4.53e-01 0.00 1.64 0.55 0 0 1

2 1.71e-02 2.09 2.22e-01 1.21 1.44 0.42 0 0 1

3 1.04e-02 0.72 2.02e-01 0.14 1.43 0.56 0 0 1

AvgMPFA 4 4.37e-03 1.28 1.01e-01 1.02 1.41 0.46 0 0 1

5 1.51e-03 1.54 3.49e-02 1.54 1.41 0.38 0 0 1

6 4.36e-04 1.80 1.03e-02 1.77 1.41 0.36 0 0 1

7 1.14e-04 1.93 2.78e-03 1.89 1.41 0.33 0 0 1

transition from Ω1 to Ω2 is located at x = 0.6, and the permeability tensors are chosen as432

Λ1 =


3 1 0

1 3 0

0 0 1

 , Λ2 =


10 3 0

3 10 0

0 0 1

 . (66)

The exact solutions in the sub-domains are433

u1 = 14x+ y + z, u2 = 4x+ y + z + 6. (67)

Figure 6 (left) depicts the exact solution. Please note that the exact solution and the corresponding434

flux function are globally continuous within the domain. It can also be seen that the grid is non-435

matching at the transition of the sub-domains. Such non-matching grids often occur in faulted436

geological environments. The grid in Figure 6 is defined by means of the standard corner-point437
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(a) Box scheme (b) AvgMPFA scheme

(c) NLTPFA scheme (d) NLMPFA scheme

Figure 3: Solution of Box, AvgMPFA, NLTPFA and NLMPFA schemes for the first extremum principle test case.

grid format and has been generated with the Matlab Reservoir Simulation Toolbox (MRST) [33].438

To read in the grid, the opm-grid module from the Open Porous Media (OPM) initiative2 has439

been used.440

Table 7: Discrete error norms, number of non-zero entries in the Jacobian matrix (nnz) and the number of Newton

iterations (nIt) needed for the linearity-preservation test case.

scheme ‖un − u‖L2 ‖un − u‖T nnz nIt

NLTPFA 1.97e-08 8.11e-07 184111 4

NLMPFA 1.99e-08 8.31e-07 184202 7

AvgMPFA 1.99e-08 8.31e-07 184111 1

TPFA 9.11e-03 3.92e-01 107600 1

Table 7 lists the discrete error norms, the number of non-zero entries in the Jacobian matrix441

(nnz) and the number of Newton iterations (nIt) needed for the simulation run. It can be seen442

that the NLTPFA, the NLMPFA and the AvgMPFA all reproduce the exact solution, because the443

2http://opm-project.org/
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Figure 4: Unstructured grid used for the second discrete extremum principle test case.

errors are within the range of the nonlinear and linear solver tolerance, whereas the errors of the444

linear TPFA scheme are approximately five orders of magnitude higher. It is well-known that the445

errors of the linear TPFA scheme are in O(1) for non-K-orthogonal grids. However, the improved446

accuracy of the other schemes comes with the cost of a larger face flux stencil, which is the reason447

why the corresponding Jacobian matrices are denser than the one of the TPFA scheme. When448

using Picard’s method instead of Newton’s method, the number of non-zero entries would be the449

same for the NLTPFA and TPFA scheme.450

451

The next example is a synthetic model of sedimentary basin inspired by the 3D Northeast German452

Basin model presented in [34]. An approximate geometry of the basin was reconstructed using the453

software TemisFlow developed at IFPEN. For that case, the stationary heat equation is solved,454

where, here, Λ corresponds to the thermal conductivity [W/(m ·K)] and u to the temperature [K].455

The thermal conductivity has been computed using the following law456

Λ =

(
Λw
Λs

)φ
Λs

1 + αu
,

where α is a coefficient used to express the thermal dependency, Λw and Λs denote the water and457

rock conductivities, and φ the porosity. A vertical geothermal gradient was assumed initially to458

evaluate the law. Salt diapirs within this model create high conductive regions, as shown in Figure459

7, leading to thermal anomalies. A robust discretization with respect to the grid is required for460

this type of structure, in order to evaluate the temperature field and to perform thermohaline461

simulations. At the top and bottom boundaries, Dirichlet conditions are set to 281.15 K and462

423.15 K, respectively, whereas Neumann no-flow conditions are used elsewhere.463

Figure 8 (a)-(c) show the numerical solutions of the TPFA, NLTPFA and the Box scheme.464

Additionally, the absolute difference between the TPFA and the NLTPFA is depicted in Figure 8465

(d). It is observed that the TPFA scheme differs from the NLTPFA and Box scheme especially at466
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(a) Box scheme (b) AvgMPFA scheme

(c) NLTPFA scheme (d) NLMPFA scheme

Figure 5: Solution of Box, AvgMPFA, NLTPFA and NLMPFA schemes for the second discrete extremum principle

test case.

the salt domes, where it seems that the TPFA scheme overestimates the temperature values.467

Table 8 lists the discrete error norms ‖u1 − u2‖L2 between the schemes. Please note that the468

total domain volume is approximately |Ω| ≈ 1.75e14 m3, which explains why the errors are quite469

large. All schemes differ at most from the TPFA scheme, which shows a better accuracy of the470

schemes compared to a TPFA.471

Table 8: Discrete error norms ‖u1 − u2‖L2 between the different schemes.

scheme NLTPFA NLMPFA AvgMPFA TPFA Box nnz nIt

NLTPFA 0 9.09e06 2.28e06 6.69e07 2.27e07 11967982 6

NLMPFA 9.09e06 0 8.98e06 6.57e07 2.26e07 11969149 9

AvgMPFA 2.28e06 8.98e06 0 6.69e07 2.26e07 11967982 1

TPFA 6.69e07 6.57e07 6.69e07 0 7.84e07 5974567 1

Box 2.27e07 2.26e07 2.26e07 7.84e07 0 23684992 1

Again, the number of non-zero entries of the NLTPFA, NLMPFA and AvgMPFA is approxi-472

mately twice the number of the TPFA scheme. Moreover, the most dense matrix is the one of the473
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Figure 6: Exact solution for linearity-preservation test case (left); Grid used for the spatial discretization (right).

Figure 7: Thermal conductivity of the Northeast German Basin. The salt domes correspond to the high conductive

regions. The domain lengths in coordinate directions are approximately 169 km (in the x-direction), 165 km (in the

y-direction), and 17.57 km (in the z-direction).

Box scheme.474

6. Conclusion475

In this article, a family of cell-centered finite volume schemes has been introduced and analyzed.476

The construction of these schemes is based on a convex combination of two face flux approxima-477

tions. These face flux approximations are designed to satisfy a strong consistency condition by478

choosing an appropriate face interpolator.479

In the first part of this work, a proof of the convergence of this family of schemes has been480

given. In Section 4, two representatives of this family have been constructed, namely the non-481

linear two-point flux approximation (NLTPFA) and the nonlinear multi-point flux approximation482

(NLMPFA), such that the strong consistency assumption is fulfilled. To guarantee the existence483

of a discrete solution, the discrete flux approximations have been modified to be continuous in484
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(a) TPFA scheme (b) NLTPFA scheme

(c) Box scheme (d) Difference of TPFA and NLTPFA

Figure 8: Solution of TPFA, NLTPFA and Box scheme (a)-(c). Absolute difference of TPFA and NLTPFA scheme

(d). The results are shown for a part of the domain.

HTn(Ω). Moreover, the NLTPFA scheme has been extended to the case where negative coefficients485

arise in the conormal decomposition. This has been achieved by reformulating the residual term486

in the flux approximation.487

Finally, in Section 5, the nonlinear schemes have been compared to linear ones. The con-488

vergence behavior has been analyzed for a mild and high anisotropy test case on non-matching,489

randomly distorted and twisted grids. It has been observed that there are almost no differences490

in the convergence rates between the linear AvgMPFA and the nonlinear schemes. In addition to491

that, estimates have shown the coercivity of the schemes for the considered test cases. The main492

difference between the NLTPFA and the NLMPFA is the number of Newton iterations needed for493

convergence. For all test cases, the NLTPFA requires less iterations than the NLMPFA scheme.494

The positivity-preserving property of the nonlinear schemes has been analyzed in Section 5.2,495

where it has been shown that linear schemes produce unphysical negative values, in contrast to496

the nonlinear ones. In Section 5.3, it has been demonstrated that the introduced schemes are497

linearly exact on non-matching grids. Furthermore, the schemes have been applied to a synthetic498

geological formation inspired by the Northeast German Basin, to solve the stationary heat equa-499

tion with heterogeneous thermal conductivities. It has been shown that the standard linear TPFA500

scheme overestimates the temperature in salt domes, whereas the NLTPFA, NLMPFA, AvgMPFA501

and Box schemes all exhibit similar behavior.502

Within this work, only linear elliptic problems have been considered. Therefore, using a non-503

linear discretization method obviously deteriorates the efficiency of the computations compared to504
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linear schemes. However, this drawback vanishes when solving highly nonlinear partial differential505

equations [21].506

7. Appendix: Technical propositions507

Proposition 3 (Density of a space of test-functions). Under Hypotheses 2, let Q be the space of508

functions ϕ : Ω→ R s.t.509

(i) (ϕ is continuous and piecewise regular) ϕ ∈ C0(Ω) and, for all i = 1, . . . , NΩ, ϕ ∈ C2(Ωi),510

(ii) ( the tangential derivatives of ϕ are continuous through the interfaces of PΩ) for all i, j = 1, . . . , NΩ,511

for all vectors t parallel to ∂Ωi ∩ ∂Ωj, (∇ϕ)|Ωi ·t = (∇ϕ)|Ωj ·t on ∂Ωi ∩ ∂Ωj, where (∇ϕ)|Ωi512

refers to the value of ∇ϕ on ∂Ωi computed from the values on Ωi,513

(iii) ( the flux of∇ϕ directed by Λn is continuous through the interfaces of PΩ) for all i, j = 1, . . . , NΩ514

s.t. ∂Ωi ∩ ∂Ωj has dimension d − 1, (Λ∇ϕ)|Ωi ·ni + (Λ∇ϕ)|Ωj ·nj = 0 on ∂Ωi ∩ ∂Ωj, where515

ni is the outer normal to Ωi.516

Then, Q is dense in H1
0 (Ω).517

Proof. see [4].518

Proposition 4 (Discrete Sobolev embeddings). Let D be an element of a family of discretizations519

matching Definition 1. Let q ∈ [1,+∞) if d = 2, and q ∈ [1, 2d/(d− 2)] if d > 2. Then, there520

exists a strictly positive parameter C2 > 0 depending only on Ω, q, %1 and %2 s.t.521

‖u‖Lq(Ω) ≤ C2‖u‖T ∀u ∈ HT (Ω).

Proof. This result can be proved following the guidelines of the proof in [12, §5.1.2], since all522

discrete norms considered in this work are equivalent under the mesh regularity assumptions of523

Definition 1.524

Theorem 2 (Discrete Rellich theorem). Let {Dn}n∈N be a sequence of admissible discretizations525

matching Definition 1 s.t. hDn → 0 as n → ∞. Let {vn}n∈N be a sequence in HTn(Ω) s.t. there526

exists C > 0 with ‖vn‖Tn ≤ C for all n ∈ N. Then, there exist a subsequence of {vn}n∈N and a527

function ṽ ∈ H1
0 (Ω) s.t., as n→∞, (i) vn → ṽ in Lq(Ω) for all q ∈ [1, 2d/(d− 2)) (and weakly in528

L2d/(d−2)(Ω) if d > 2); (ii) {∇̃Dnvn}n∈N weakly converges to ∇ṽ in [L2(Ω)]d.529

Proof. This theorem deduces from (11) using the same techniques as for [12, Lemmata 5.6–5.7].530

Proposition 5 (Asymptotic stability of the interpolator). Under Hypotheses 1, we have531

‖ϕT ‖T ≤
1

γ1

(
εD(ϕ) + β0

√
d|ϕ|H1(Ω)

)
for all ϕ ∈ D.532
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Proof. Let ϕ ∈ D. Owing to (P2), we get533

γ1‖ϕT ‖2T ≤ aT (ϕT , ϕT , ϕT )

=

(
aT (ϕT , ϕT , ϕT )−

∫
Ω

Λ∇ϕ·∇̃DϕT dx

)
+

∫
Ω

Λ∇ϕ·∇̃DϕT dx

≤ εD(ϕ)‖ϕT ‖T + β0|ϕ|H1(Ω)‖∇̃DϕT ‖[L2(Ω)]d ≤
(
εD(ϕ) + β0

√
d|ϕ|H1(Ω)

)
‖ϕT ‖T .

Proposition 6 (Stability). Assume that Hypotheses 1 hold. Then, any solution un ∈ HDn(Ω) of534

problem (4) for a given n ∈ N satisfies the stability estimate535

‖un‖Tn ≤
C2

γ1
‖f‖Lr(Ω). (68)

Proof. Using the fact that f ∈ Lr(Ω) and thanks to (P2), Hölder’s inequality and Proposition 4,536

we have537

γ1‖un‖2Tn ≤ aTn(un, un, un) =

∫
Ω

fun dx ≤ ‖f‖Lr(Ω)‖un‖Lr′ (Ω) ≤ C2‖f‖Lr(Ω)‖un‖Tn ,

with r′
def
= r

r−1 = 2d
d−2 .538
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