, Role of Enhanced Oil Recovery in Accelerating the Deployment of Carbon Capture and Sequestration, 2010.

S. Thomas, Enhanced Oil Recovery-An Overview, Oil & Gas Science and Technology-Rev, IFP, vol.63, pp.9-19, 2008.

K. Damen, A. Faaij, W. Turkenburg, and . Health, Safety and Environmental Risks of Underground Co2 StorageOverview of Mechanisms and Current Knowledge, Climatic Change, vol.74, pp.289-318, 2006.

P. A. Gauglitz, F. Friedmann, S. I. Kam, and W. R. Rossen, Foam generation in homogeneous porous media, Chemical Engineering Science, vol.57, pp.4037-4052, 2002.

D. Tanzil, G. J. Hirasaki, and C. A. Miller, Conditions for Foam Generation in Homogeneous Porous Media, p.75176, 2002.

A. R. Kovscek, T. W. Patzek, and C. J. Radke, Mechanistic Prediction of Foam Displacement in Multidimensions: A Population Balance Approach, p.27789, 1994.

G. Batôt, M. Fleury, R. E. , L. Nabzar, M. Chabert et al., Foam Propagation in Rock Samples: Impact of Oil and Flow Caracterization, 2016.

Z. I. Khatib, G. J. Hirasaki, and A. H. Falls, Effects of Capillary Pressure on Coalescence and Phase Mobilities in Foams Flowing Through Porous Media, pp.919-926, 1988.

R. M. Enick and D. K. Olsen, Mobility and Conformance Control for Carbon Dioxyde Enhanced Oil Recovery (CO2-EOR) via Thickeners, Foams, and Gels-A detailed Literature Review of 40 years of Research, 2012.

W. R. Brock and L. A. Bryan, Summary Results of CO2 EOR Field Tests, pp.1972-1987, 1989.

A. Skauge, M. G. Aarra, L. Surguchev, H. A. Martinsen, and L. Rasmussen, Foam-Assisted WAG: Experience from the Snorre Field, p.75157, 2002.

W. J. Mclendon, P. Koronaios, R. M. Enick, G. Biesmans, L. Salazar et al., Assessment of CO2-soluble non-ionic surfactants for mobility reduction using mobility measurements and CT imaging, Journal of Petroleum Science and Engineering, vol.119, pp.196-209, 2014.

G. G. Bernard and L. W. Holm, Method for recovering oil from subterranean formations US patent, vol.3, p.256, 1967.

W. T. Osterloh and M. J. Jante, Effects of Gas and Liquid Velocity on Steady-State Foam Flow at High Temperature, p.24179, 1992.

J. M. Alvarez, H. J. Rivas, and W. R. Rossen, Unified Model for Steady-State Foam Behavior at High and Low Foam Qualities, SPE journal, p.74141, 2001.

K. Ma, J. L. Lopez-salinas, M. C. Puerto, C. A. Miller, S. L. Biswal et al., Estimation of Parameters for the Simulation of Foam Flow through Porous Media. Part 1: The Dry-Out Effect, Energy Fuels, vol.27, pp.2363-2375, 2013.

A. Moradi-araghi, E. L. Johnston, D. R. Zornes, and K. J. Harpole, Laboratory Evaluation of Surfactants for CO2Foam Applications at the South Cowden Unit, vol.37218, 1997.

M. Chabert, M. Morvan, and L. Nabzar, Advanced screening technologies for the selection of dense CO2 foaming surfactants, p.154147, 2012.

G. Chauveteau and A. Zaitoun, Basic rheological behavior of xanthan polysaccharide solutions in porous media: effects of pore size and polymer concentration Developments in Petroleum Science 13, Enhanced Oil Recovery: Proceedings of the Third European Symposium on Enhanced Oil Recovery, pp.197-212, 1981.

L. Pedroni,