A. Aydin, Faulting in sandstone, 1977.

A. Aydin, Small faults formed as deformation bands in sandstone, Pure and Applied Geophysics PAGEOPH, vol.10, issue.4-5, pp.913-930, 1978.
DOI : 10.1007/BF00876546

G. Caillet and S. Batiot, 2D modelling of hydrocarbon migration along and across growth faults: an example from Nigeria, Petroleum Geoscience, vol.9, issue.2, pp.113-124, 2003.
DOI : 10.1144/1354-079302-499

J. S. Caine, J. P. Evans, and C. B. Forster, Fault zone architecture and permeability structure, Geology, vol.24, issue.11, pp.1025-1028, 1996.
DOI : 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2

C. Childs, J. J. Walsh, T. Manzocchi, J. Strand, A. Nicol et al., Definition of a fault permeability predictor from outcrop studies of a faulted turbidite sequence, Structurally complex reservoirs, pp.235-258, 2007.

T. Cornu, C. Gout, M. Cacas-stenz, M. Woillez, N. Guy et al., NOMBA an integrated project for coupling basin modeling and geomechanical simulations, AAPG Hedberg conference: the future of basin and petroleum system modeling, 2016.

J. P. Evans, Thickness-displacement relationships for fault zones, Journal of Structural Geology, vol.12, issue.8, pp.1061-1065, 1990.
DOI : 10.1016/0191-8141(90)90101-4

I. Faille, M. Thibaut, M. Cacas, P. Havé, F. Willien et al., Modeling Fluid Flow in Faulted Basins, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.69, issue.4, pp.529-553, 2014.
DOI : 10.2516/ogst/2013204

URL : https://hal.archives-ouvertes.fr/hal-01068329

D. R. Faulkner, T. M. Mitchell, E. H. Rutter, and J. Cembrano, On the structure and mechanical properties of large strike-slip faults, Geological Society, London, Special Publications, vol.299, issue.1, pp.139-150, 2008.
DOI : 10.1144/SP299.9

Q. J. Fisher, M. Casey, S. D. Harris, and R. J. Knipe, Fluid-flow properties of faults in sandstone: The importance of temperature history, Geology, vol.31, issue.11, pp.965-968, 2003.
DOI : 10.1130/G19823.1

N. Fredman, J. Tveranger, S. Semshaug, A. Braathen, and E. Sverdrup, Sensitivity of fluid flow to fault core architecture and petrophysical properties of fault rocks in siliciclastic reservoirs: a synthetic fault model study, Petroleum Geoscience, vol.13, issue.4, pp.305-320, 2007.
DOI : 10.1144/1354-079306-721

D. J. Grauls and J. M. Baleix, Role of overpressures and in situ stresses in fault-controlled hydrocarbon migration: a case study, Marine and Petroleum Geology, vol.11, issue.6, pp.734-742, 1994.
DOI : 10.1016/0264-8172(94)90026-4

M. Kacewicz, R. K. Davies, M. Welch, and R. J. Knipe, An integration of fault rock properties through time with basin modeling, 2008.

R. H. Lander, R. E. Larese, and L. M. Bonnell, Toward more accurate quartz cement models: The importance of euhedral versus noneuhedral growth rates, AAPG Bulletin, vol.92, issue.11, pp.1537-1563, 2008.
DOI : 10.1306/07160808037

R. H. Lander and O. Walderhaug, Porosity prediction through simulation of sandstone compaction and quartz cementation, Am. Assoc. Petrol. Geol. Bull, vol.83, pp.433-449, 1999.

D. A. Lockner, H. Tanaka, H. Ito, R. Ikeda, K. Omura et al., Geometry of the Nojima Fault at Nojima-Hirabayashi, Japan ??? I. A Simple Damage Structure Inferred from Borehole Core Permeability, Pure and Applied Geophysics, vol.166, issue.10-11, pp.1649-1667, 2009.
DOI : 10.1007/s00024-009-0515-0

T. Manzocchi, J. J. Walsh, P. Nell, and G. Yielding, Fault transmissibility multipliers for flow simulation models, Petroleum Geoscience, vol.5, issue.1, pp.53-63, 1999.
DOI : 10.1144/petgeo.5.1.53

T. Manzocchi, C. Childs, and J. J. Walsh, Faults and fault properties in hydrocarbon flow models, Geofluids, pp.1-2, 2010.
DOI : 10.1002/9781444394900.ch8

L. Micarelli, A. Benedicto, and C. A. Wibberley, Structural evolution and permeability of normal fault zones in highly porous carbonate rocks, Journal of Structural Geology, vol.28, issue.7, pp.1214-1227, 2006.
DOI : 10.1016/j.jsg.2006.03.036

URL : https://hal.archives-ouvertes.fr/hal-00023785

T. M. Mitchell and D. R. Faulkner, Towards quantifying the matrix permeability of fault damage zones in low porosity rocks, Earth and Planetary Science Letters, vol.339, issue.340, pp.24-31, 2012.
DOI : 10.1016/j.epsl.2012.05.014

K. E. Peters, L. B. Magoon, C. Lampe, A. H. Scheirer, P. G. Lillis et al., A four-dimensional petroleum systems model for the San Joaquin Basin Province, California: Chapter 12 in Petroleum systems and geologic assessment of oil and gas in the, pp.1713-1725, 2008.

A. Revil and L. M. Cathles, Fluid transport by solitary waves along growing faults, Earth and Planetary Science Letters, vol.202, issue.2, pp.321-335, 2002.
DOI : 10.1016/S0012-821X(02)00784-7

J. L. Rudkiewicz, H. D. Penteado, A. Vear, M. Vandenbroucke, F. Brigaud et al., Integrated Basin Modeling Helps to Decipher Petroleum Systems, p.73, 2000.

J. Schmatz, P. J. Vrolijk, and J. L. Urai, Clay smear in normal fault zones ??? The effect of multilayers and clay cementation in water-saturated model experiments, Journal of Structural Geology, vol.32, issue.11, pp.1834-1849, 2010.
DOI : 10.1016/j.jsg.2009.12.006

S. Schueller, A. Braathen, H. Fossen, and J. Tveranger, Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones: Statistical analysis of field data, Journal of Structural Geology, vol.52, pp.148-162, 2013.
DOI : 10.1016/j.jsg.2013.03.013

Z. K. Shipton, A. M. Soden, and J. D. Kirkpatrick, How thick is a fault? Fault displacement-thickness scaling revisited, Geophys. Mon, vol.31, issue.B1, pp.193-198, 2006.
DOI : 10.1130/G19667R.1

URL : http://eprints.gla.ac.uk/3557/1/shipton2thickness_agu.pdf

S. Schneider, S. Wolf, I. Faille, and D. Pot, A 3d Basin Model for Hydrocarbon Potential Evaluation: Application to Congo Offshore, Oil & Gas Science and Technology, vol.55, issue.1, pp.3-13, 2000.
DOI : 10.2516/ogst:2000001

S. Sperrevik, R. B. Faerseth, and R. H. Gabrielsen, Experiments on clay smear formation along faults, Petroleum Geoscience, vol.6, issue.2, pp.113-123, 2000.
DOI : 10.1144/petgeo.6.2.113

S. Sperrevik, P. A. Gillespie, Q. J. Fisher, T. Halvorsen, and R. J. Knipe, Empirical estimation of fault rock properties, Nor, Petrol. Soc. Spec. Publ, vol.11, pp.109-125, 2002.

A. Torabi and S. S. Berg, Scaling of fault attributes: A review, Marine and Petroleum Geology, vol.28, issue.8, pp.1444-1460, 2011.
DOI : 10.1016/j.marpetgeo.2011.04.003

X. Tunc, I. Faille, T. Gallouët, M. Cacas, and P. Havé, A model for conductive faults with non-matching grids, Computational Geosciences, vol.81, issue.6, pp.277-29610, 2012.
DOI : 10.2118/17992-PA

J. E. Vidale and Y. G. Li, Damage to the shallow Landers fault from the nearby Hector Mine earthquake, Nature, vol.92, issue.6922, pp.524-526, 2003.
DOI : 10.1785/0120000917

O. Walderhaug, Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs, Am. Assoc. Petrol. Geol. Bull, vol.80, pp.731-745, 1996.

C. A. Wibberley, G. Yielding, D. Toro, and G. , Recent advances in the understanding of fault zone internal structure: a review, Geological Society, London, Special Publications, vol.299, issue.1, pp.5-33, 2008.
DOI : 10.1144/SP299.2

C. A. Wibberley, J. Gonzalez-dunia, and O. Billon, Faults as barriers or channels to production-related flow: insights from case studies, Petroleum Geoscience, vol.23, issue.1, pp.2016-057, 2016.
DOI : 10.1144/petgeo2016-057

S. J. Wilkins and S. J. Naruk, Quantitative analysis of slip-induced dilation with application to fault seal, AAPG Bulletin, vol.91, issue.1, pp.97-113, 2007.
DOI : 10.1306/08010605177

Y. Yang and A. C. Aplin, A permeability???porosity relationship for mudstones, Marine and Petroleum Geology, vol.27, issue.8, pp.1692-1697, 2010.
DOI : 10.1016/j.marpetgeo.2009.07.001

G. Yielding, P. Bretan, and B. Freeman, Fault seal calibration: a brief review, Geological Society, London, Special Publications, vol.347, issue.1, pp.243-255, 2010.
DOI : 10.1144/SP347.14

URL : http://sp.lyellcollection.org/content/347/1/243.full.pdf