Simulation of a Potential CO 2 Storage in the West Paris Basin: Site Characterization and Assessment of the Long-Term Hydrodynamical and Geochemical Impacts Induced by the CO 2 Injection

Abstract : — This article presents the preliminary results of a study carried out as part of a demonstration project of CO 2 storage in the Paris Basin. This project funded by ADEME (French Environment and Energy Management Agency) and several industrial partners (TOTAL, ENGIE, EDF, Lafarge, Air Liquide, Vallourec) aimed to study the possibility to set up an experimental infrastructure of CO 2 transport and storage. Regarding the storage, the objectives were: (1) to characterize the selected site by optimizing the number of wells in a CO 2 injection case of 200 Mt over 50 years in the Trias, (2) to simulate over time the CO 2 migration and the induced pressure field, and (3) to analyze the geochemical behavior of the rock over the long term (1,000 years). The preliminary site characterization study revealed that only the southern area of Keuper succeeds to satisfy this injection criterion using only four injectors. However, a complementary study based on a refined fluid flow model with additional secondary faults concluded that this zone presents the highest potential of CO 2 injection but without reaching the objective of 200 Mt with a reasonable number of wells. The simulation of the base scenario, carried out before the model refinement, showed that the overpressure above 0.1 MPa covers an area of 51,869 km 2 in the Chaunoy formation, 1,000 years after the end of the injection, which corresponds to the whole West Paris Basin, whereas the CO 2 plume extension remains small (524 km 2). This overpressure causes brine flows at the domain boundaries and a local overpressure in the studied oil fields. Regarding the preliminary risk analysis of this project, the geochemical effects induced by the CO 2 injection were studied by simulating the fluid-rock interactions with a coupled geochemical and fluid flow model in a domain limited to the storage complex. A one-way coupling of two models based on two domains fitting into each other was developed using dynamic boundary conditions. This approach succeeded to improve the simulation results of the pressure field and the CO 2 plume as well as the geochemical behavior of the rock. These ones showed that the CO 2 plume tends to stabilize thanks to the carbonation in calcite and dawsonite and no significant porosity change appears over 1,050 years. The CO 2 mass balance per trapping type gives a CO 2 carbonation rate of about 78% at 1,050 years that seemed to be excessive compared to the simulation study of other storage sites. Thus, an additional work dealing with both the kinetic data base and the textural models would be necessary in order to reduce the uncertainty of the injected CO 2 mineralization.
Type de document :
Article dans une revue
Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, Institut Français du Pétrole, 2017, 72 (4), pp.2017 - 2017. 〈10.2516/ogst/2017021〉
Liste complète des métadonnées

Littérature citée [54 références]  Voir  Masquer  Télécharger

https://hal-ifp.archives-ouvertes.fr/hal-01637284
Contributeur : Françoise Bertrand <>
Soumis le : vendredi 17 novembre 2017 - 14:36:14
Dernière modification le : mardi 15 mai 2018 - 14:50:04

Fichier

ogst160144.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

IFP | OGST

Citation

Audrey Estublier, Alexandre Fornel, Etienne Brosse, Pascal Houel, Jean-Claude Lecomte, et al.. Simulation of a Potential CO 2 Storage in the West Paris Basin: Site Characterization and Assessment of the Long-Term Hydrodynamical and Geochemical Impacts Induced by the CO 2 Injection. Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, Institut Français du Pétrole, 2017, 72 (4), pp.2017 - 2017. 〈10.2516/ogst/2017021〉. 〈hal-01637284〉

Partager

Métriques

Consultations de la notice

28

Téléchargements de fichiers

21