, Climate Change 2013: The Physical Science Basis, Firth Assessment Report, 2013.

C. Liu and X. Li, Carbon storage and sequestration by urban forests in Shenyang, China. Urban For. Urban Green, vol.11, pp.121-128, 2012.

. Ipcc-guidelines, Chapter 5: Carbon dioxide transport, injection and geological storage, IPCC Guidelines for National Greenhouse Gas Inventories, 2006.

M. Ishida and H. Jin, A new advanced power-generation system using chemical-looping combustion, vol.19, pp.415-422, 1994.

M. Ishida, D. Zheng, and T. Akehata, Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis, vol.12, pp.147-154, 1987.

A. Lyngfelt, B. Leckner, and T. Mattisson, A fluidized-bed combustion process with inherent CO 2 separation; application of chemical-looping combustion, Chem. Eng. Sci, vol.56, pp.3101-3113, 2001.

A. Lyngfelt, Chemical-looping combustion of solide fuels-Status of development, Appl. Energy, vol.113, pp.1869-1873, 2014.

P. Wang, N. Means, D. Shekhawat, D. Berry, and M. Massoudi, Chemical-Looping Combustion and gasification of coals and oxygen carrier development: A brief review, vol.8, pp.10605-10635, 2015.

A. Bhave, H. S. Taylor, P. Fennell, W. R. Livingston, N. Shah et al., Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO 2 targets, Appl. Energy, vol.190, pp.481-489, 2017.

S. Noorman, M. Van-sint-annaland, and J. A. Kuipers, Experimental validation of packed bed chemical-looping combustion, Chem. Eng. Sci, vol.65, pp.92-97, 2010.

L. Blas, P. Dutournié, S. Dorge, L. Josien, D. Kehrli et al., Thermal stability study of NiAl 2 O 4 binders for Chemical-Looping Combustion application, Fuel, vol.182, pp.50-56, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398800

C. Dueso, A. Abad, F. García-labiano, L. F. De-diego, P. Gayán et al., Reactivity of a NiO/Al 2 O 3 oxygen carrier prepared by impregnation for chemical-looping combustion, Fuel, vol.89, pp.3399-3409, 2010.

P. Gayán, L. F. De-diego, F. García-labiano, J. Adánez, A. Abad et al., Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion, Fuel, vol.87, pp.2641-2650, 2008.

L. Blas, S. Dorge, L. Michelin, P. Dutournié, A. Lambert et al., Influence of the regeneration conditions on the performances and the microstructure modifications of NiO/NiAl 2 O 4 for chemical looping combustion, Fuel, vol.153, pp.284-293, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01174467

M. M. Hossain and H. I. De-lasa, Chemical-looping combustion (CLC) for inherent separations-A review, Chem. Eng. Sci, vol.63, pp.4433-4451, 2008.

P. Ohlemüller, F. Alobaid, A. Gunnarson, J. Ströhle, and B. Epple, Development of a porous model for coal chemical looping combustion and validation against 100 kWth tests, Appl. Energy, vol.157, pp.433-448, 2015.

X. Wang, B. Jin, Y. Zhang, and X. Liu, Three dimensional modelling of a coal-fired chemical looping combustion process in the circulating fluidized bed fuel reactor, Energy Fuels, vol.27, pp.2173-2184, 2013.

F. Alobaid, P. Ohlemüller, J. Ströhle, and B. Epple, Extended Euler-Euler model for the simulation of a 1 MWth chemical-looping pilot plant, vol.93, pp.2395-2405, 2015.

L. Han and G. M. Bollas, Chemical-looping combustion in a reverse flow fixed bed reactor, vol.102, pp.669-681, 2016.

G. Diglio, P. Bareschino, E. Mancusi, and F. Pepe, Novel quasi authermal hydrogen production process in a fixed-bed reactor using a chemical looping approach: A numerical study, Int. J. Hydrog. Energy, vol.42, pp.15010-15023, 2017.

Z. Liang, W. Qin, and C. Dong, Experimental and Theoretical Study of the Interactions between Fe 2 O 3 /Al 2 O 3 and CO, vol.10, 2017.

L. Blas, S. Dorge, P. Dutournié, A. Lambert, D. Chiche et al., Study of the performances of an oxygen carrier: Experimental investigation of the binder's contribution and characterization of its structural modifications, Comptes Rendus Chim, vol.18, pp.45-55, 2015.

Z. Zhou, L. Han, and G. M. Bollas, Kinetics of NiO reduction by H 2 and Ni oxidation at conditions relevant to chemical-looping combustion and reforming, Int. J. Hydrog. Energy, vol.39, pp.8535-8556, 2014.

I. Iliuta, R. Tahoces, G. S. Patience, S. Rifflart, and F. Luck, Chemical-looping combustion process: Kinetics and mathematical modelling, AIChE J, vol.56, pp.1063-1079, 2010.
DOI : 10.1002/aic.11967

L. Han, Z. Zhou, and G. M. Bollas, Model-based analysis of chemical-looping combustion experiments. Part II: Optimal design of CH 4-NIO reduction experiments, Chem. Eng. Sci, vol.113, pp.116-128, 2014.

M. Ishida, H. Jin, and T. Okamoto, A fundamental study of a new kind of medium material for chemical looping combustion, Energy Fuels, vol.10, pp.958-963, 1996.

T. A. Utigard, M. Wu, G. Plascencia, and T. Marin, Reduction kinetics of goro nickel oxide using hydrogen, Chem. Eng. Sci, vol.60, pp.2061-2068, 2005.

C. Dueso, M. Ortiz, A. Abad, F. García-labiano, L. F. De-diego et al., Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming, Chem. Eng. J, vol.188, pp.142-154, 2012.

H. J. Ryu, D. H. Bae, K. H. Han, S. Y. Lee, G. T. Jin et al., Oxidation and reduction characteristics of oxygen carrier particles and reaction kinetics by unreacted core model, Korean J. Chem. Eng, vol.18, pp.831-837, 2001.

M. M. Hossain and H. De-lasa, Reduction and oxidation kinetics of Co-Ni/Al 2 O 3 oxygen carrier involved in a chemical-looping combustion cycles, Chem. Eng. Sci, vol.65, pp.98-106, 2010.

F. Garcia-labiano, L. F. De-diego, J. Adanez, A. Abad, and P. Gayan, Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical looping combustion, Ind. Eng. Chem. Res, vol.43, pp.8168-8177, 2004.

M. M. Hossain and H. De-lasa, Reactivity and stability of Co-Ni/Al 2 O 3 oxygen carrier in multicycle chemical-looping combustion, AIChE J, vol.53, pp.1817-1829, 2007.

H. Kruggel-emden, S. Rickelt, F. Stepanek, and A. Munjiza, Development and testing of an interconnected multiphase CFD-model for chemical looping combustion, Chem. Eng. Sci, vol.65, pp.4732-4745, 2010.

J. T. Richardson, R. M. Scates, and M. V. Twigg, X-ray diffraction of hydrogen reduction of NiO: ?-Al 2 O 3 steam reforming catalysts, Appl. Catal. A, vol.267, pp.35-46, 2004.

A. Gomez-barea and P. Ollero, An approximate method for solving gas-solid non-catalytic reactions, Chem. Eng. Sci, vol.61, pp.3725-3735, 2006.

R. B. Bird, W. E. Stewart, and E. N. Ligthfoot, Transport Phenomena, 2007.

K. Annamalai and I. K. Puri, Combustion Science and Engineering, 2007.

G. Diglio, P. Bareschino, E. Mancusi, and F. Pepe, Simulation of hydrogen production through chemical looping reforming process in a packed-bed reactor, Chem. Eng. Res. Des, vol.105, pp.137-151, 2016.

S. Noorman, F. Gallucci, M. V. Annaland, and J. A. Kuipers, A theoretical investigation of CLC in packed beds. Part 2: Reactor model, Chem. Eng. J, vol.167, pp.369-376, 2011.

P. Valencia, K. Espinosa, A. Ceballos, M. Pinto, and S. Almonacid, Novel modeling methodology for the characterization of enzymatic hydrolysis of proteins, Proc. Biochem, vol.50, pp.589-597, 2015.

P. Dutournié, P. Salagnac, and P. Glouannec, Optimization of radiant-convective Drying of a porous medium by design of experiment methodology, Dry. Technol, vol.24, pp.953-963, 2006.

J. Lam, S. T. Carmichael, W. E. Lowry, and T. Segura, Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture, Adv. Healthc. Mat, vol.4, pp.534-539, 2015.

K. Hinkelmann and O. Kempthorne, Design and Analysis of Experiments, Licensee MDPI, 2008.