C. Naik, K. Puduppakkam, and E. Meeks, Simulation and Analysis of In-Cylinder Soot Formation in a Low Temperature Combustion Diesel Engine Using a Detailed Reaction Mechanism, SAE International Journal of Engines, vol.6, issue.2, pp.2013-2014, 2013.
DOI : 10.4271/2013-01-1565

H. Pitsch, H. Barths, and N. Peters, Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach, SAE Technical Paper Series, p.962059, 1996.
DOI : 10.4271/962057

H. Barths, C. Hasse, G. Bikas, and N. Peters, Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model, Proceedings of the Combustion Institute, vol.28, issue.1, pp.1161-1168, 2000.
DOI : 10.1016/S0082-0784(00)80326-4

O. Gicquel, N. Darabiha, and D. Thevenin, Numerical and experimental study of no emission in laminar partially premixed flames, Proceedings of the Combustion Institute, vol.28, issue.2, pp.2419-2425, 2000.
DOI : 10.1016/S0082-0784(00)80655-4

URL : https://hal.archives-ouvertes.fr/hal-00256704

J. A. Van-oijen, F. A. Lammers, and L. P. De-goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combustion and Flame, vol.127, issue.3, pp.2124-2134, 2001.
DOI : 10.1016/S0010-2180(01)00316-9

O. Colin and A. Benkenida, The 3-Zones Extended Coherent Flame Model (Ecfm3z) for Computing Premixed/Diffusion Combustion, Oil & Gas Science and Technology, vol.59, issue.6, pp.593-609, 2004.
DOI : 10.2516/ogst:2004043

L. Martinez, J. B. Michel, S. Jay, and O. Colin, Evaluation of Different Tabulation Techniques Dedicated to the Prediction of the Combustion and Pollutants Emissions on a Diesel Engine with 3D CFD, SAE Technical Paper Series, pp.2013-2014, 2013.
DOI : 10.4271/2013-01-1093

C. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, Journal of Fluid Mechanics, vol.504, pp.73-97, 2004.
DOI : 10.1017/S0022112004008213

M. Ihme and H. Pitsch, Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model, Combustion and Flame, vol.155, issue.1-2, pp.90-107, 2008.
DOI : 10.1016/j.combustflame.2008.04.015

A. Klimenko and R. Bilger, Conditional moment closure for turbulent combustion, Progress in Energy and Combustion Science, vol.25, issue.6, pp.595-687, 1999.
DOI : 10.1016/S0360-1285(99)00006-4

G. D. Paola, I. S. Kim, and E. Mastorakos, Second-Order Conditional Moment Closure Simulations of Autoignition of an n-heptane Plume in a Turbulent Coflow of Heated Air, Flow, Turbulence and Combustion, vol.10, issue.6, pp.455-475, 2008.
DOI : 10.1080/00102207608946750

B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier et al., Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM, Combustion Theory and Modelling, vol.24, issue.3, pp.449-470, 2003.
DOI : 10.1016/0010-2180(84)90024-5

URL : https://hal.archives-ouvertes.fr/hal-00256666

L. Vervisch, R. Hauguel, P. Domingo, and M. Rullaud, Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame, Journal of Turbulence, vol.5, 2004.
DOI : 10.1088/1468-5248/5/1/004

C. Pera, O. Colin, and S. Jay, Development of a FPI Detailed Chemistry Tabulation Methodology for Internal Combustion Engines, Oil & Gas Science and Technology - Revue de l'IFP, vol.64, issue.3, pp.243-258, 2009.
DOI : 10.2516/ogst/2009002

J. Galpin, C. Angelberger, A. Naudin, and L. Vervisch, Large-eddy simulation of H2/air auto-ignition using tabulated detailed chemistry, J. Turbulence, vol.9, 2008.

S. Singh, R. Reitz, and M. Musculus, Comparison of the Characteristic Time (CTC), Representative Interactive Flamelet (RIF), and Direct Integration with Detailed Chemistry Combustion Models against Optical Diagnostic Data for Multi-Mode Combustion in a Heavy-Duty DI Diesel Engine, SAE Technical Paper Series, pp.2006-2007, 2006.
DOI : 10.4271/2006-01-0055

J. B. Michel, O. Colin, and D. Veynante, Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry, Combustion and Flame, vol.152, issue.1-2, pp.80-99, 2008.
DOI : 10.1016/j.combustflame.2007.09.001

URL : https://hal.archives-ouvertes.fr/hal-00271673

J. B. Michel, O. Colin, and D. Veynante, Comparison of differing formulations of the PCM model by their application to the simulation of an auto-igniting H2/air jet, Flow Turbulence Combust, pp.33-60, 2009.

J. Tillou, J. B. Michel, C. Angelberger, and D. Veynante, Assessing LES models based on tabulated chemistry for the simulation of Diesel spray combustion, Combustion and Flame, vol.161, issue.2, pp.525-540, 2014.
DOI : 10.1016/j.combustflame.2013.09.006

URL : https://hal.archives-ouvertes.fr/hal-01219288

A. Patel, S. Kong, and R. Reitz, Development and validation of a reduced reaction mechanism for HCCI engine simulations, SAE Paper, pp.2004-2005, 2004.

J. B. Michel and O. Colin, A tabulated diffusion flame model applied to diesel engine simulations, International Journal of Engine Research, vol.109, issue.3, pp.346-369, 2014.
DOI : 10.1016/S0010-2180(96)00149-6

S. Jay and O. Colin, A variable volume approach of tabulated detailed chemistry and its applications to multidimensional engine simulations, Proceedings of the Combustion Institute, vol.33, issue.2, pp.3065-3072, 2011.
DOI : 10.1016/j.proci.2010.08.003

C. Bekdemir, L. M. Somers, L. P. De-goey, J. Tillou, and C. Angelberger, Predicting diesel combustion characteristics with Large-Eddy Simulations including tabulated chemical kinetics, Proceedings of the Combustion Institute, vol.34, issue.2, pp.3067-3074, 2013.
DOI : 10.1016/j.proci.2012.06.160

C. Bekdemir, B. Somers, and P. De-goey, DNS with detailed and tabulated chemistry of engine relevant igniting systems, Combustion and Flame, vol.161, issue.1, pp.201-221, 2014.
DOI : 10.1016/j.combustflame.2013.08.022

U. Eguz, S. Ayyapureddi, C. Bekdemir, B. Somers, and P. De-goey, Manifold resolution study of the FGM method for an igniting diesel spray, Fuel, vol.113, pp.228-238, 2013.
DOI : 10.1016/j.fuel.2013.05.090

R. Kee, F. Rupley, and J. Miller, Chemkin II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Tech. Rep. SAND89-8009B, Sandia National Laboratories, 1989.

J. B. Michel, O. Colin, C. Angelberger, and D. Veynante, Using the tabulated diffusion flamelet model ADF-PCM to simulate a lifted methane???air jet flame, Combustion and Flame, vol.156, issue.7, pp.1318-1331, 2009.
DOI : 10.1016/j.combustflame.2008.12.012

URL : https://hal.archives-ouvertes.fr/hal-00430396

R. Cabra, T. Myhrvold, J. Chen, R. Dibble, A. Karpetis et al., Simultaneous laser raman-rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow, Proceedings of the Combustion Institute, vol.29, issue.2, pp.29-1881, 2002.
DOI : 10.1016/S1540-7489(02)80228-0

J. Reveillon, C. Pera, and Z. Bouali, Examples of the potential of DNS for the undestanding of reactive multiphase flows, Int. J. Spray Combust. Dyn, vol.3, pp.65-94, 2011.

M. Chauvy, B. Delhom, J. Reveillon, and F. Demoulin, Flame/Wall Interactions: Laminar Study of Unburnt HC Formation, Flow Turbulence Combust, pp.369-396, 2010.

S. Lele, Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics, vol.103, issue.1, pp.16-42, 1992.
DOI : 10.1016/0021-9991(92)90324-R

A. Wray, Minimal storage time-advancement schemes for spectral methods, Tech. Rep, 1990.

Z. Bouali, C. Pera, and J. Reveillon, Numerical analysis of the influence of two-phase flow mass and heat transfer on n-heptane autoignition, Combustion and Flame, vol.159, issue.6, pp.65-94, 2012.
DOI : 10.1016/j.combustflame.2012.01.018

S. Sreedhara and N. Lakshmisha, Autoignition in a non-premixed medium: DNS studies on the effects of three-dimensional turbulence, Proceedings of the Combustion Institute, vol.29, issue.2, pp.2051-2059, 2002.
DOI : 10.1016/S1540-7489(02)80250-4

G. Borghesi, E. Mastorakos, and R. Cant, Complex chemistry DNS of n-heptane spray autoignition at high pressure and intermediate temperature conditions, Combustion and Flame, vol.160, issue.7, pp.1254-1275, 2013.
DOI : 10.1016/j.combustflame.2013.02.009

T. Passot and A. Pouquet, Numerical simulation of compressible homogeneous flows in the turbulent regime, Journal of Fluid Mechanics, vol.211, issue.-1, pp.441-466, 1987.
DOI : 10.1002/sapm1971504377

J. Reveillon, NUMERICAL PROCEDURES TO GENERATE AND TO VISUALIZE FLOW FIELDS FROM ANALYTICAL OR EXPERIMENTAL STATISTICS: TURBULENT VELOCITY, FLUCTUATING SCALARS, AND VARIABLE DENSITY SPRAYS, Journal of Flow Visualization and Image Processing, vol.12, issue.3, pp.1-19, 2005.
DOI : 10.1615/JFlowVisImageProc.v12.i3.30

URL : https://hal.archives-ouvertes.fr/hal-00767602

M. Ihme, C. M. Cha, and H. Pitsch, Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach, Proceedings of the Combustion Institute, vol.30, issue.1, pp.793-800, 2005.
DOI : 10.1016/j.proci.2004.08.260

W. J. Ramaekers, J. A. Van-oijen, and L. De-goey, A priori testing of Flamelet Generated Manifolds for turbulent partially Premixed Methane / Air flames, Flow Turbulence Combust, pp.439-458, 2010.

R. D. Meester, B. Naud, and B. Merci, A priori investigation of PDF-modeling assumptions for a turbulent swirling bluff body flame (???SM1???), Combustion and Flame, vol.159, issue.11, pp.3353-3357, 2012.
DOI : 10.1016/j.combustflame.2012.06.018

H. Pitsch and N. Peters, A Consistent Flamelet Formulation for Non-Premixed Combustion Considering Differential Diffusion Effects, Combustion and Flame, vol.114, issue.1-2, pp.26-40, 1998.
DOI : 10.1016/S0010-2180(97)00278-2

E. Mastorakos, Ignition of turbulent non-premixed flames, Progress in Energy and Combustion Science, vol.35, issue.1, pp.57-97, 2009.
DOI : 10.1016/j.pecs.2008.07.002