C. Global and . Institute, The Global Status of CCS, Summary report, 2015.

D. Y. Leung, G. Caramanna, M. Maroto-valer, and M. , An overview of current status of carbon dioxide capture and storage technologies, Renewable and Sustainable Energy Reviews, vol.39, pp.426-443, 2014.
DOI : 10.1016/j.rser.2014.07.093

S. Bachu, D. Bonijoly, J. Bradshaw, R. Burruss, S. Holloway et al., CO2 storage capacity estimation: Methodology and gaps, International Journal of Greenhouse Gas Control, vol.1, issue.4, pp.430-443, 2007.
DOI : 10.1016/S1750-5836(07)00086-2

E. S. Rubin, J. E. Davison, and H. J. Herzog, The cost of CO2 capture and storage, International Journal of Greenhouse Gas Control, vol.40, pp.378-400, 2015.
DOI : 10.1016/j.ijggc.2015.05.018

D. Schumann, E. Duetschke, and K. Pietzner, Public Perception of CO2 Offshore Storage in Germany: Regional Differences and Determinants, Energy Procedia, vol.63, pp.7096-7112, 2014.
DOI : 10.1016/j.egypro.2014.11.744

P. Ashworth, S. Wade, D. Reiner, and X. Liang, Developments in public communications on CCS, Developments in public communications on CCS, pp.449-458, 2015.
DOI : 10.1016/j.ijggc.2015.06.002

G. Kerlero-de-robso, L. Rakotojanoa, D. Bucy, and J. , Valorisation chimique du CO2, Etat des lieux, Valorisation chimique du CO2 : état des lieux, Quantification des bénéfices énergétiques et environnementaux et évaluation économique de trois voies chimiques, 2014.

G. Waldstein, Catalytic methanation-the Audi e-gas project as an example of industrialized technology for power to gas, proceeding of the Regatech Conference, pp.67-68, 2015.

R. Stanger, T. Wall, R. Spörl, M. Paneru, S. Grathwohl et al., Oxyfuel combustion for CO2 capture in power plants, International Journal of Greenhouse Gas Control, vol.40, pp.55-125, 2015.
DOI : 10.1016/j.ijggc.2015.06.010

J. Pham, S. Lethier, N. Marcano, and P. Recourt, Operating experience and performance characteristics of a gasoxycombustion technology at Total's Carbon Capture and Storage demonstration plant, 2012.

R. Cuellar-franca and A. Azapagic, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts, Journal of CO2 Utilization, vol.9, pp.82-102, 2014.
DOI : 10.1016/j.jcou.2014.12.001

K. Goto, K. Yogo, and T. Higashii, A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture, Applied Energy, vol.111, pp.710-720, 2013.
DOI : 10.1016/j.apenergy.2013.05.020

P. A. Raynal, A. Bouillon, P. Gomez, and . Broutin, From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture, Chemical Engineering Journal, vol.171, issue.3, pp.742-752, 2011.
DOI : 10.1016/j.cej.2011.01.008

J. Abanades, B. Arias, A. Lyngfelt, T. Matisson, D. E. Wiley et al., Emerging CO2 capture systems, International Journal of Greenhouse Gas Control, vol.40, pp.126-166, 2015.
DOI : 10.1016/j.ijggc.2015.04.018

O. Authier, L. Moullec, and Y. , Coal Chemical-Looping Combustion for Electricity Generation: Investigation for a 250 MWe Power Plant, Energy Procedia, vol.37, pp.588-597, 2013.
DOI : 10.1016/j.egypro.2013.05.146

URL : http://doi.org/10.1016/j.egypro.2013.05.146

C. Ekström, F. Schwendig, O. Biede, F. Franco, G. Haupt et al., Techno-Economic Evaluations and Benchmarking of Pre-combustion CO2 Capture and Oxy-fuel Processes Developed in the European ENCAP Project, Energy Procedia, pp.4233-4440, 2009.
DOI : 10.1016/j.egypro.2009.02.234

R. Wennersten, Q. Sun, and H. Li, The future potential for Carbon Capture and Storage in climate change mitigation ??? an overview from perspectives of technology, economy and risk, Journal of Cleaner Production, vol.103, pp.724-736, 2015.
DOI : 10.1016/j.jclepro.2014.09.023

M. Ishida and H. Jin, A new advanced power-generation system using chemical-looping combustion, Energy, vol.19, issue.4, pp.415-422, 1994.
DOI : 10.1016/0360-5442(94)90120-1

M. Ishida, D. Zheng, and T. Akehata, Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis Energy, pp.147-154, 1987.

L. S. Fan, L. Zeng, and S. Luo, Chemical-looping technology platform, AIChE Journal, vol.1, issue.1, pp.2-22, 2015.
DOI : 10.1016/j.egypro.2009.01.003

C. W. Zhao, X. P. Chen, E. J. Anthony, X. Jiang, L. B. Duan et al., Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent, Progress in Energy and Combustion Science, pp.515-534, 2013.
DOI : 10.1016/j.pecs.2013.05.001

A. Lyngfelt, B. Kronberger, J. Adánez, J. Morin, and P. Hurst, The Grace project. Development of oxygen carrier particles for chemical-looping combustion, design and operation of a 10 kW Chemical-Looping combustor, Proc 7 th Int Conf Greenhouse Gas Control Technology ?GHGT 7, 2004.

J. Adánez, L. De-diego, F. García-labiano, P. Gayán, and A. Abad, Selection of Oxygen Carriers for Chemical-Looping Combustion, Energy & Fuels, vol.18, issue.2, pp.371-317, 2004.
DOI : 10.1021/ef0301452

H. J. Ryu, G. Jin, and C. Yi, Demonstration of inherent CO2 separation and no NOx emission in a 50 kW Chemical Looping combustor: Continuous reduction and oxidation experiment, Proc 7th Int Conf Greenhouse Gas Control Technology -GHGT7, 2004.

T. Pröll, P. Kolbitsch, J. Bolhàr-nordenkampf, H. Hofbauer, M. Yazdanpanah et al., Demonstration of Chemical Looping Combustion at relevant operating conditions, In " Carbon dioxide capture for storage in deep geological formations results from the CO2 capture project Experimental investigations on a novel Chemical Looping Combustion configuration, Oil Gas Sci. Technol, vol.3, issue.66, pp.75-84, 2009.

N. Berguerand and A. Lyngfelt, Design and operation of a 10kWth chemical-looping combustor for solid fuels ??? Testing with South African coal, Fuel, vol.87, issue.12, pp.2713-2726, 2008.
DOI : 10.1016/j.fuel.2008.03.008

N. Berguerand and A. Lyngfelt, The use of petroleum coke as fuel in a 10kWth chemical-looping combustor, International Journal of Greenhouse Gas Control, vol.2, issue.2, pp.169-179, 2008.
DOI : 10.1016/j.ijggc.2007.12.004

H. Stainton, A. Ginet, K. Surla, and A. Hoteit, Experimental investigation of CLC coal combustion with nickel based particles in a fluidized bed, Fuel, vol.101, pp.205-214, 2012.
DOI : 10.1016/j.fuel.2011.08.025

T. Sozinho, W. Pelletant, H. Stainton, F. Guillou, and T. Gauthier, Main results of the 10 kWth pilot plant operation, 2nd International Conference on Chemical Looping, pp.26-28, 2012.

E. Anthony, Solid Looping Cycles:?? A New Technology for Coal Conversion, Industrial & Engineering Chemistry Research, vol.47, issue.6, pp.1747-1754, 2008.
DOI : 10.1021/ie071310u

H. Jin and M. Ishida, A new type of coal gas fueled chemical-looping combustion, Fuel, vol.83, issue.17-18, pp.2411-2417, 2004.
DOI : 10.1016/j.fuel.2004.06.033

T. Mattisson, A. Lyngfelt, and H. Leion, Chemical-looping with oxygen uncoupling for combustion of solid fuels, International Journal of Greenhouse Gas Control, vol.3, issue.1, pp.11-19, 2009.
DOI : 10.1016/j.ijggc.2008.06.002

A. Hoteit, A. Forret, W. Pelletant, J. Roesler, and T. Gauthier, Chemical Looping Combustion with Different Types of Liquid Fuels, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.66, issue.2, pp.193-199, 2011.
DOI : 10.2516/ogst/2010022

P. Moldenhauer, M. Ryden, and T. Mattisson, Chemical-looping combustion and chemical-looping reforming of kerosene in a circulating fluidized-bed 300W laboratory reactor, International Journal of Greenhouse Gas Control, vol.9, pp.1-9, 2012.
DOI : 10.1016/j.ijggc.2012.02.015

Y. Cao, B. Casenas, and P. W. , Investigation of Chemical Looping Combustion by Solid Fuels. 2. Redox Reaction Kinetics and Product Characterization with Coal, Biomass, and Solid Waste as Solid Fuels and CuO as an Oxygen Carrier, Energy & Fuels, vol.20, issue.5, pp.1845-1854, 2006.
DOI : 10.1021/ef050424k

L. Shen, J. Wu, J. Xiao, Q. Song, and R. Xiao, Reactor with Iron Oxide As an Oxygen Carrier, Energy & Fuels, vol.23, issue.5, pp.2498-2505, 2009.
DOI : 10.1021/ef900033n

M. Rydén and A. Lyngfelt, Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion, International Journal of Hydrogen Energy, vol.31, issue.10, pp.311271-1283, 2006.
DOI : 10.1016/j.ijhydene.2005.12.003

M. Ortiz, A. Abad, L. De-diego, F. García-labiano, P. Gayán et al., Optimization of hydrogen production by Chemical-Looping auto-thermal Reforming working with Ni-based oxygen-carriers, International Journal of Hydrogen Energy, vol.36, issue.16, pp.9663-9672, 2011.
DOI : 10.1016/j.ijhydene.2011.05.025

L. S. Fan, Chemical Looping systems for fossil energy conversions, 2010.
DOI : 10.1002/9780470872888

J. I. Baek, C. K. Ryu, J. Ryu, J. W. Kim, T. H. Eom et al., Performance Comparison of Spray-Dried Oxygen Carriers: The Effect of NiO and Pseudoboehmite Content in Raw Materials, Energy & Fuels, vol.24, issue.10, pp.5757-5764, 2010.
DOI : 10.1021/ef100772p

E. Jerndal, T. Mattisson, I. Thijs, F. Snijkers, and A. Lyngfelt, NiO particles with Ca and Mg based additives produced by spray- drying as oxygen carriers for chemical-looping combustion, Greenhouse Gas control Technologies 9 ? GHGT 9, Energy Procedia, pp.479-486, 2009.
DOI : 10.1016/j.egypro.2009.01.064

URL : http://doi.org/10.1016/j.egypro.2009.01.064

L. F. De-diego, F. García-labiano, P. Gayán, J. Celaya, J. M. Palacios et al., Operation of a 10kWth chemical-looping combustor during 200h with a CuO???Al2O3 oxygen carrier, Fuel, vol.86, issue.7-8, pp.1036-1045, 2007.
DOI : 10.1016/j.fuel.2006.10.004

F. Amortegui and C. R. , Combustion de gas con captura de CO2 mediante transportadores solidos de oxigeno basados en CuO, 2011.

G. Q. Wei, F. He, Z. Huang, A. Q. Zheng, K. Zhao et al., Chemical Looping Integrated Fluidized Bed Reactor for Gasifying Biomass Using an Iron-Based Oxygen Carrier, Energy & Fuels, vol.29, issue.1, pp.233-241, 2015.
DOI : 10.1021/ef5021457

C. Linderholm, A. Lyngfelt, A. Cuadrat, and E. Jerndal, Chemical-looping combustion of solid fuels ??? Operation in a 10kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite, Fuel, vol.102, pp.808-822, 2012.
DOI : 10.1016/j.fuel.2012.05.010

H. Leion, T. Mattissson, and A. Lyngfelt, Use of Ores and Industrial Products As Oxygen Carriers in Chemical-Looping Combustion, Energy & Fuels, vol.23, issue.4, pp.2307-2315, 2009.
DOI : 10.1021/ef8008629

P. Knutsson and C. Linderholm, Characterization of ilmenite used as oxygen carrier in a 100kW chemical-looping combustor for solid fuels, 3rd International conference on Chemical Looping, pp.9-11, 2014.
DOI : 10.1016/j.apenergy.2015.05.122

A. Lyngfelt and C. Linderholm, ChemInform Abstract: Chemical-Looping Combustion of Solid Fuels - Technology Overview and Recent Operational Results in 100 KW Unit, ChemInform, vol.63, issue.10, pp.98-112, 2014.
DOI : 10.1016/j.egypro.2014.11.011

A. Lambert, E. Comte, D. Marti, T. Sozinho, S. Bertholin et al., On the mechanisms of oxygen carrier degradation during multiple CLC cycles, 6th High Temperature Solid Looping Network Meeting, pp.2-3, 2013.

T. Mattisson, A. Jardna, and A. Lyngfelt, Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and OxygenApplication for Chemical-Looping Combustion, Energy & Fuels, vol.17, issue.3, pp.643-651, 2003.
DOI : 10.1021/ef020151i

I. Iliuta, R. Tahoces, G. S. Patience, S. Rifflart, and F. Luck, Chemical-looping combustion process: Kinetics and mathematical modeling, AIChE Journal, vol.48, issue.4, 2010.
DOI : 10.1016/S1750-5836(07)00023-0

H. Leion, T. Mattisson, and A. Lyngfelt, The use of petroleum coke as fuel in chemical-looping combustion, Fuel, vol.86, issue.12-13, pp.1947-1958, 2007.
DOI : 10.1016/j.fuel.2006.11.037

J. Ströhle, M. Orth, and B. Epple, Design and operation of a 1MWth chemical looping plant, Applied Energy, vol.113, pp.1490-1495, 2014.
DOI : 10.1016/j.apenergy.2013.09.008

P. Ohlemuller, J. P. Bush, M. Reitz, J. Strohle, and B. Epple, Chemical Looping Combustion of hard coal, authothermal operation of a 1 MWth Pilot Plant, Journal of Energy Resources Technology, vol.138, pp.1-7, 2016.

H. Andrus, J. Chui, P. Thibeault, C. Edberg, D. Turek et al., Alstom's limestone-based (LCL?) Chemical Looping process, 2nd International Conference on Chemical Looping, pp.26-28, 2012.

J. Ma, H. Zhao, X. Tian, Y. Wei, Y. Zhang et al., Using Hematite as Oxygen Carrier, Energy & Fuels, vol.29, issue.5, pp.3257-3267, 2015.
DOI : 10.1021/ef502881x

J. Bao, Z. Li, H. Sun, and N. Cai, Continuous Test of Ilmenite-Based Oxygen Carriers for Chemical Looping Combustion in a Dual Fluidized Bed Reactor System, Industrial & Engineering Chemistry Research, vol.52, issue.42, pp.14817-14827, 2013.
DOI : 10.1021/ie4025209

S. Wang, G. Wang, F. Jiang, M. Luo, and H. Li, Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier, Energy & Environmental Science, vol.87, issue.4, pp.1353-1360, 2010.
DOI : 10.1039/b926193a

J. Li, C. Dong, J. Zhang, and Y. Yang, Experimental research on gas-solid flow in a dual fluidized bed, International conference on sustainable power generation and supply, pp.1-4, 2009.

S. Bourgeon, T. Gauthier, F. Guillou, and H. Stainton, Chemical Looping Combustion, development status and perspectives, 2 nd International conference on Chemical Looping, pp.26-28, 2012.

V. Bari?i?, E. Coda-zabetta, T. Eriksson, A. Hotta, S. Kokki et al., CFB technology provides solutions for reducing CO2 emissions Industrial Fluidization South Africa,.3-23, IFSA, 2008.

D. C. Guio-perez, T. Pröll, and H. Hofbauer, Influence of ring-type internals on the solids residence time distribution in the fuel reactor of a dual circulating fluidized bed system for chemical looping combustion, Chemical Engineering Research and Design, vol.92, issue.6, pp.1107-1118, 2014.
DOI : 10.1016/j.cherd.2013.10.018

S. Penthor, M. Stolhof, T. Pröll, and H. Hofbauer, Detailed fluid dynamic investigations of a novel fuel reactor concept for chemical looping combustion of solid fuels, Powder Technology, vol.287, pp.61-69, 2016.
DOI : 10.1016/j.powtec.2015.09.029

J. W. Wells, Process and apparatus for the fluidized catalytic cracking of an hydrocarbon feed, 1998.

A. Thon, M. Kramp, E. U. Hartge, H. S. Werther, J. Yazdanpanah et al., Operational experience with a coupled fluidized bed system for Chemical Looping Combustion of solid fuels , 2 nd international conference on Chemical Looping An experimental investigation of L-valve operation in an interconnected circulating fluidized bed system, Powder Technol, vol.221, issue.76, pp.236-244, 2012.

M. M. Yazdanpanah, A. Hoteit, T. Forret, A. Gauthier, and . Delabarre, Gas tracer study in a non-mechanical L-Valve, 10th International Conference on Circulating Fluidized Beds and Fluidization Technology -CFB-10 " (2013) Eds, ECI Symposium Series

T. M. Knowlton and I. Hirsan, L-valves characterized for solids flow, pp.149-156, 1978.

W. Yang and T. M. Knowlton, L-valve equations, Powder Technology, vol.77, issue.1, pp.49-54, 1993.
DOI : 10.1016/0032-5910(93)85006-U

W. C. Yang, Handbook of fluidization and fluid-particle systems Investigation of a Chemical Looping Combustion (CLC) Configuration with gas feed, PhD INPL, 1991.

M. M. Yazdanpanah, A. Forret, and T. Gauthier, Impact of size and temperature on the hydrodynamics of chemical looping combustion, Applied Energy, vol.157, pp.416-421, 2015.
DOI : 10.1016/j.apenergy.2015.07.015

URL : https://hal.archives-ouvertes.fr/hal-01266619

M. M. Yazdanpanah, A. Forret, T. Gauthier, and A. Delebarre, An experimental investigation of loop-seal operation in an interconnected circulating fluidized bed system, Powder Technology, vol.237, pp.266-275, 2013.
DOI : 10.1016/j.powtec.2012.11.033

I. Abdulally, C. Beal, H. Andrus, B. Apple, A. Lyngfelt et al., Alstom's Chemical Looping Prototypes Program Update, 37th International Technical Conference on Clean Coal & Fuel Systems, 2012.

A. Hoteit, F. Guillou, S. Rifflart, and T. Gauthier, Particle separation device for Chemical Looping Combustion loop, 2011.

J. Werther and E. Hartge, A population balance model of the particle inventory in a fluidized-bed reactor/regenerator system, Powder Technology, vol.148, issue.2-3, pp.113-122, 2004.
DOI : 10.1016/j.powtec.2004.09.005

M. Kramp, A. Thon, E. Hartge, S. Heinrich, and J. Werther, The Role of Attrition and Solids Recovery in a Chemical Looping Combustion Process, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.66, issue.2, pp.277-290, 2011.
DOI : 10.2516/ogst/2010035

B. Amblard, S. Bertholin, C. Bobin, and T. Gauthier, Development of an attrition evaluation method using a Jet Cup rig, Powder Technology, vol.274, pp.455-465, 2015.
DOI : 10.1016/j.powtec.2015.01.001

URL : https://hal.archives-ouvertes.fr/hal-01149043

R. Cocco, Y. Arrington, R. Hays, J. Findlay, S. B. Karri et al., Jet cup attrition testing, Powder Technology, vol.200, issue.3, pp.224-233, 2010.
DOI : 10.1016/j.powtec.2010.02.029

H. Bi, N. Ellis, I. Abba, and J. Grace, A state-of-the-art review of gas???solid turbulent fluidization, Chemical Engineering Science, vol.55, issue.21, pp.4789-4825, 2000.
DOI : 10.1016/S0009-2509(00)00107-X

M. Foka, J. Chaouki, C. Guy, and D. Klvana, Gas phase hydrodynamics of a gas-solid turbulent fluidized bed reactor, Chemical Engineering Science, vol.51, issue.5, pp.713-736, 1996.
DOI : 10.1016/0009-2509(95)00326-6

N. Ellis, Hydrodynamics of gas-solid turbulent fluidized beds, 2003.

S. Rodrigues, Flow modeling of Group B particles in the transport regime for CLC, PhD Dissertation, 2014.

S. S. Rodrigues, A. Forret, F. Montjovet, M. Lance, and T. Gauthier, Riser hydrodynamic study with different Group B powders, Riser hydrodynamic study with different Group B powders, pp.300-308, 2015.
DOI : 10.1016/j.powtec.2014.12.014

URL : https://hal.archives-ouvertes.fr/hal-01137265