A virtual volume method for heterogeneous and anisotropic diffusion-reaction problems on general meshes.

Abstract : Starting from the recently introduced virtual element method, we construct new diffusion fluxes in two and three dimensions that give birth to symmetric, unconditionally coercive finite volume like schemes for the discretization of heterogeneous and anisotropic diffusion-reaction problems on general, possibly nonconforming meshes. Convergence of the approximate solutions is proved for general tensors and meshes. Error estimates are derived under classical regularity assumptions. Numerical results illustrate the performance of the scheme. The link with the original vertex approximate gradient scheme is emphasized. Mathematics Subject Classification. 65N08, 65N12, 65N15.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 51 (3), pp.797-824. 〈10.1051/m2an/2016036〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal-ifp.archives-ouvertes.fr/hal-01581888
Contributeur : Françoise Bertrand <>
Soumis le : mardi 5 septembre 2017 - 11:47:52
Dernière modification le : mardi 15 mai 2018 - 14:50:03

Fichier

0026192-03.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Julien Coatléven. A virtual volume method for heterogeneous and anisotropic diffusion-reaction problems on general meshes.. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 51 (3), pp.797-824. 〈10.1051/m2an/2016036〉. 〈hal-01581888〉

Partager

Métriques

Consultations de la notice

63

Téléchargements de fichiers

28