V. Seidl, C. Gamauf, I. Druzhinina, B. Seiboth, L. Hartl et al., The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome, BMC Genomics, vol.9, issue.1, p.327, 2008.
DOI : 10.1186/1471-2164-9-327

M. Vitikainen, M. Arvas, T. Pakula, M. Oja, M. Penttilä et al., Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties, BMC Genomics, vol.11, issue.1, p.441, 2010.
DOI : 10.1186/1471-2164-11-441

L. Crom, S. Schackwitz, W. Pennacchio, L. Magnuson, J. Culley et al., Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing, Proceedings of the National Academy of Sciences, vol.72, issue.3, pp.16151-16157, 2009.
DOI : 10.1128/AEM.72.3.2126-2133.2006

H. Koike, A. Aerts, K. Labutti, I. Grigoriev, and S. Baker, Strains, Industrial Biotechnology, vol.9, issue.6, pp.352-67, 2013.
DOI : 10.1089/ind.2013.0015

P. Jdo, T. Furukawa, K. Mori, Y. Shida, H. Hirakawa et al., Single nucleotide polymorphism analysis of a Trichoderma reesei hyper?cellulolytic mutant developed in Japan, Biosci Biotechnol Biochem, vol.77, pp.534-577, 2013.

M. Nitta, T. Furukawa, Y. Shida, K. Mori, S. Kuhara et al., A new Zn(II)2Cys6-type transcription factor BglR regulates ??-glucosidase expression in Trichoderma reesei, Fungal Genetics and Biology, vol.49, issue.5, pp.388-97, 2012.
DOI : 10.1016/j.fgb.2012.02.009

B. Thomma, M. Seidl, X. Shi?kunne, D. Cook, M. Bolton et al., Mind the gap; seven reasons to close fragmented genome assemblies, Fungal Genetics and Biology, vol.90, pp.24-30, 2016.
DOI : 10.1016/j.fgb.2015.08.010

K. Smith, J. Galazka, P. Phatale, L. Connolly, and M. Freitag, Centromeres of filamentous fungi, Chromosome Research, vol.472, issue.5, pp.635-56, 2012.
DOI : 10.1038/nature09854

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409310

J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, Capturing Chromosome Conformation, Science, vol.295, issue.5558, pp.1306-1317, 2002.
DOI : 10.1126/science.1067799

H. Marie?nelly, M. Marbouty, A. Cournac, J. Flot, G. Liti et al., High-quality genome (re)assembly using chromosomal contact data, Nature Communications, vol.5, p.5695, 2014.
DOI : 10.1080/01621459.2000.10473908

URL : https://hal.archives-ouvertes.fr/hal-01138788

J. Flot, H. Marie?nelly, and R. Koszul, Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures, FEBS Letters, vol.111, issue.20PartA, pp.2966-74, 2015.
DOI : 10.1073/pnas.1416014111

URL : https://hal.archives-ouvertes.fr/pasteur-01419996

H. Marie?nelly, M. Marbouty, A. Cournac, G. Liti, G. Fischer et al., Filling annotation gaps in yeast genomes using genome-wide contact maps, Bioinformatics, vol.30, issue.15, pp.2105-2118, 2014.
DOI : 10.1093/bioinformatics/btu162

URL : https://hal.archives-ouvertes.fr/pasteur-01488132

I. Druzhinina, A. Kopchinskiy, E. Kubicek, and C. Kubicek, A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness, Biotechnology for Biofuels, vol.7, issue.Web Server issu, p.75, 2016.
DOI : 10.1186/1471-2105-7-474

Z. Duan, M. Andronescu, K. Schutz, S. Mcilwain, Y. Kim et al., A three-dimensional model of the yeast genome, Nature, vol.465, issue.7296, pp.363-370, 2010.
DOI : 10.1073/pnas.0402766101

D. Poggi?parodi, F. Bidard, A. Pirayre, T. Portnoy, C. Blugeon et al., Kinetic transcriptome analysis reveals an essentially intact induction system in a cellulase hyper-producer Trichoderma reesei strain, Biotechnology for Biofuels, vol.32, issue.suppl 2, p.173, 2014.
DOI : 10.1093/nar/gkh894

URL : https://hal.archives-ouvertes.fr/hal-01112360

M. Nambiar and G. Smith, Repression of harmful meiotic recombination in centromeric regions, Seminars in Cell & Developmental Biology, vol.54, pp.188-97, 2016.
DOI : 10.1016/j.semcdb.2016.01.042

V. Wood, R. Gwilliam, M. Rajandream, M. Lyne, R. Lyne et al., The genome sequence of Schizosaccharomyces pombe, Nature, vol.415, issue.6874, pp.871-80, 2002.
DOI : 10.1038/nature724

H. Malik and S. Henikoff, Major Evolutionary Transitions in Centromere Complexity, Cell, vol.138, issue.6, pp.1067-82, 2009.
DOI : 10.1016/j.cell.2009.08.036

URL : http://doi.org/10.1016/j.cell.2009.08.036

Y. Nakaseko, Y. Adachi, S. Funahashi, O. Niwa, and M. Yanagida, Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast, EMBO J, vol.5, pp.1011-1032, 1986.

B. Fishel, H. Amstutz, M. Baum, J. Carbon, and L. Clarke, Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe., Molecular and Cellular Biology, vol.8, issue.2, pp.754-63, 1988.
DOI : 10.1128/MCB.8.2.754

K. Sanyal, M. Baum, and J. Carbon, Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique, Proceedings of the National Academy of Sciences, vol.79, issue.5, pp.11374-11383, 2004.
DOI : 10.1016/0092-8674(94)90075-2

G. Chatterjee, S. Sankaranarayanan, K. Guin, Y. Thattikota, S. Padmanabhan et al., Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis, PLOS Genetics, vol.6, issue.1, p.1005839, 2016.
DOI : 10.1371/journal.pgen.1005839.s014

A. Coughlan, S. Hanson, K. Byrne, and K. Wolfe, Have a Simple Inverted-Repeat Structure, Genome Biology and Evolution, vol.8, issue.8, pp.2482-92, 2016.
DOI : 10.1093/gbe/evw178

URL : http://doi.org/10.1093/gbe/evw178

V. Choesmel, S. Fribourg, A. Aguissa?touré, N. Pinaud, P. Legrand et al., Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder, Human Molecular Genetics, vol.17, issue.9, pp.1253-63, 2008.
DOI : 10.1093/hmg/ddn015

URL : https://hal.archives-ouvertes.fr/hal-00308960

S. Saitoh, K. Takahashi, K. Nabeshima, Y. Yamashita, Y. Nakaseko et al., Aberrant mitosis in fission yeast mutants defective in fatty acid synthetase and acetyl CoA carboxylase, The Journal of Cell Biology, vol.134, issue.4, pp.949-61, 1996.
DOI : 10.1083/jcb.134.4.949

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120970/pdf

G. Giaever, A. Chu, L. Ni, C. Connelly, L. Riles et al., Functional profiling of the Saccharomyces cerevisiae genome, Nature, vol.95, issue.6896, pp.387-91, 2002.
DOI : 10.1073/pnas.95.25.14863

R. King, M. Urban, M. Hammond?kosack, K. Hassani?pak, H. Kosack et al., The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum, BMC Genomics, vol.16, issue.1, p.544, 2015.
DOI : 10.1093/bioinformatics/btp352

K. Rippe, Making contacts on a nucleic acid polymer, Trends in Biochemical Sciences, vol.26, issue.12, pp.733-773, 2001.
DOI : 10.1016/S0968-0004(01)01978-8

. Trichoderma-reesei-v2, 0, on the JGI Genome Portal, 2016.

S. Grossetête, B. Labedan, and O. Lespinet, FUNGIpath: a tool to assess fungal metabolic pathways predicted by orthology, BMC Genomics, vol.11, issue.1, p.81, 2010.
DOI : 10.1186/1471-2164-11-81

C. Pereira, D. A. Lespinet, and O. , A meta-approach for improving the prediction and the functional annotation of ortholog groups, BMC Genomics, vol.15, issue.Suppl 6, p.16, 2014.
DOI : 10.1186/1471-2105-12-11

URL : https://hal.archives-ouvertes.fr/inserm-01229454

P. Karp, S. Paley, and P. Romero, The Pathway Tools software, Bioinformatics, vol.18, issue.Suppl 1, pp.225-257, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S225