BRANE Clust: Cluster-Assisted Gene Regulatory Network Inference Refinement

Abstract : Discovering meaningful gene interactions is crucial for the identification of novel regulatory processes in cells. Building accurately the related graphs remains challenging due to the large number of possible solutions from available data. Nonetheless, enforcing a priori on the graph structure, such as modularity, may reduce network indeterminacy issues. BRANE Clust (Biologically-Related A priori Network Enhancement with Clustering) refines gene regulatory network (GRN) inference thanks to cluster information. It works as a post-processing tool for inference methods (i.e. CLR, GENIE3). In BRANE Clust, the clustering is based on the inversion of a linear system of equations involving a graph-Laplacian matrix promoting a modular structure. Our approach is validated on DREAM4 and DREAM5 datasets with objective measures, showing significant comparative improvements. We provide additional insights on the discovery of novel regulatory or co-expressed links in the inferred Escherichia coli network evaluated using the STRING database. The comparative pertinence of clustering is discussed computationally (SIMONE, WGCNA, X-means) and biologically (RegulonDB). BRANE Clust software will be available upon publication
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger
Contributeur : Laurent Duval <>
Soumis le : lundi 6 mars 2017 - 21:29:53
Dernière modification le : vendredi 14 avril 2017 - 01:02:01
Document(s) archivé(s) le : mercredi 7 juin 2017 - 16:06:26


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01330638, version 1



Aurélie Pirayre, Camille Couprie, Laurent Duval, Jean-Christophe Pesquet. BRANE Clust: Cluster-Assisted Gene Regulatory Network Inference Refinement. 2017. 〈hal-01330638〉



Consultations de
la notice


Téléchargements du document