Chromatogram baseline estimation and denoising using sparsity (BEADS)

Abstract : This paper jointly addresses the problems of chromatogram baseline correction and noise reduction. The proposed approach is based on modeling the series of chromatogram peaks as sparse with sparse derivatives, and on modeling the baseline as a low-pass signal. A convex optimization problem is formulated so as to encapsulate these non-parametric models. To account for the positivity of chromatogram peaks, an asymmetric penalty function is utilized. A robust, computationally efficient, iterative algorithm is developed that is guaranteed to converge to the unique optimal solution. The approach, termed Baseline Estimation And Denoising with Sparsity (BEADS), is evaluated and compared with two state-of-the-art methods using both simulated and real chromatogram data.
Type de document :
Article dans une revue
Chemometrics and Intelligent Laboratory Systems, Elsevier, 2014, 139, pp.156-167. 〈10.1016/j.chemolab.2014.09.014〉
Liste complète des métadonnées

Littérature citée [55 références]  Voir  Masquer  Télécharger

https://hal-ifp.archives-ouvertes.fr/hal-01330608
Contributeur : Laurent Duval <>
Soumis le : samedi 11 juin 2016 - 18:56:05
Dernière modification le : lundi 13 juin 2016 - 15:07:49

Fichier

Ning_X_2014_j-chemometr-intell...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

IFP

Citation

Xiaoran Ning, Ivan Selesnick, Laurent Duval. Chromatogram baseline estimation and denoising using sparsity (BEADS). Chemometrics and Intelligent Laboratory Systems, Elsevier, 2014, 139, pp.156-167. 〈10.1016/j.chemolab.2014.09.014〉. 〈hal-01330608〉

Partager

Métriques

Consultations de la notice

70

Téléchargements de fichiers

130