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Abstract

The problem of eco-driving is analyzed for an urban traffic network in presence of
signalized intersections. It is assumed that the traffic lights timings are known and avail-
able to the vehicles via infrastructure-to-vehicle (I2V) communication. This work pro-
vides a solution to the energy consumption minimization, while traveling through a se-
quence of signalized intersections and always catching a green light. The optimal control
problem is non-convex due to the constraints coming from the traffic lights, therefore a
sub-optimal strategy to restore the convexity and solve the problem is proposed. Firstly,
a pruning algorithm aims at reducing the optimization domain, by considering only the
portions of the traffic lights green phases that allow to drive in compliance with the city
speed limits. Then, a graph is created in the feasible region, in order to approximate the
energy consumption associated with each available path in the driving horizon. Lastly,
after the problem convexity is recovered, a simple optimization problem is solved on the
selected path to calculate the optimal crossing times at each intersection. The optimal
speeds are then suggested to the driver. The proposed sub-optimal strategy is compared
to the optimal solution provided by Dynamic Programming, for validation purposes. It is
also shown that the low computational load of the presented approach enables robustness
properties, and results very appealing for online use.

Keywords — Eco-driving, nonlinear optimization, speed advisory, trajectory planning.

1 Introduction
Pollution reduction and energy consumption optimization are becoming more and more crit-
ical. Over the last years the number of vehicles demanding access to the road infrastructure
has increased exponentially. Governments along with scientific community aim at reducing
both environmental impact and costs of transportation. In particular the European Union has
set binding legislation to cut emissions by 20% with respect to 1990 levels by the end of
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2020 [1]. Traffic congestion and idling time at signalized intersections are among the main
causes of energy consumption. Congestion in 2010 has been calculated to cost to US drivers
about 101 billions of dollars [2]. Transportation is responsible for a substantial fraction of
total green-house gas emissions (GHG), around a quarter in the European Union, making it
the second biggest GHG emitting sector after energy production. However, while emissions
from other sectors are generally decreasing, those from transportation have increased since
1990 (by 36% in the European Union). In [3], experiments showed that the concentration of
fine particles in the air at traffic lights during stops is 29-times higher as compared to free-
flow conditions. Also, though the delay time at intersections represents only a minor portion
of the entire commuting time, it may contribute up to about 25% of the total trip emissions.

Extensive study and experimentation of several adaptive traffic control systems have been
conducted over the past three decades. Strategies such as SCOOT [4], which reduces traffic
delay by about 20% in urban areas, SCATS and TUC [5] have been employed all over the
world proving actual benefits in terms of congestion and emissions reduction. However, these
strategies present some limitations in terms of traffic conditions responsiveness and sensor
failure robustness.

The state of the art in wireless communication, the deployment of dedicated communica-
tion protocols for Vehicular Ad-hoc Networks (VANETs), and the decreasing price of GPS
receivers, allow more and more to rely on communication between the different agents of
an urban traffic network for the design of robust and efficient traffic control strategies [6].
Specifically, Infrastructure-to-Vehicle (I2V) and Vehicle-to-Vehicle (V2V) communication
attracted the attention of many due to their potential to enable fast and cheap advanced driving
assistance systems (ADAS). Several international projects and groups (Drive C2X, iTetris,
COMeSafety2, PATH), involving both automotive manufacturers and research centers, have
been working on the setup of the communication infrastructure and on the assessment of the
effect of this technology on traffic management and energy consumption.

Speed advisory for the urban environment was already proposed in the ’80s [7][8] as a
very energy-efficient traffic management strategy and as a pioneer for the modern ADAS. The
rather simple initial idea of placing a roadside sign upstream from an intersection, indicating
the travel speed to catch a green light, nowadays can be substantially improved thanks to the
road communication networks.

Knowledge of the traffic lights signal timings has been proved to be significantly ben-
eficial in terms of energy efficiency in urban traffic. Green lights optimal speed advisory
(GLOSA), with different penetration rate of the technology, has shown promising advantages
in terms of fuel consumption and average idling time [9]. Vehicles energy consumption is
strictly related to the accelerations in driving profiles. Soft decelerations to traffic lights on
red, using advanced wireless-transmitted information, have been proved to be more energy
efficient than sudden stops, allowing a reduction of both fuel consumption and emissions
[10]. In general, it is possible to reduce energy consumption by preventing a vehicle from
coming to a full stop at the intersections and by advising cruising velocities in order to catch
as many green lights as possible. This goal could be achieved in different ways. In [11],
authors developed an algorithm to minimize the acceleration profile while driving through a
sequence of signalized intersections, simulating scenarios with stochastically varied param-
eters and showing a systematic reduction of fuel consumption, emissions and travel time.
Interesting results on eco-driving with probabilistic signal phase and timing (SPAT) infor-
mation are shown in [12], where a comparison between an uninformed driver and a driver
with different information levels (full horizon and short-term) is conducted using Dynamic
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Programming (DP). An innovative solution to the velocity advisory problem, in proximity to
a traffic light, was proposed in [13], where smartphones make use of their cameras to build
a SPAT map of every intersection by relying only on V2V communication, without directly
interacting with the infrastructure. This approach may enable GLOSA service and adaptive
route change (ARC). Predictive cruise control (PCC) in traffic networks with signalized in-
tersections was extensively treated in [14]. The objective is to penalize the braking action
to indirectly reduce energy consumption and travel time, and to discourage deviations from
a suggested speed that allows to cross intersections without stopping. Somewhat similar ap-
proach was used in [15]. A preliminary algorithm determines the arrival times at each traffic
light, by assuming that the closest trajectory to the one of the unconstrained case (i.e. no
traffic lights) is the most energy-efficient. Then an analytical and numerical solution to the
fuel consumption minimization problem is proposed, for a scenario with three traffic lights
over a driving horizon of nine kilometers. In [16] only one traffic light is considered and
accelerations upstream and downstream from the intersection are varied to find sub-optimal
values for the fuel consumption minimization problem. In [17] DP is used to find the mini-
mum energy solution, for a driving horizon enclosing up to two traffic lights. An approach
to the multi-segment speed advisory is presented in [18]. The fuel consumption is indirectly
minimized by penalizing speed variations between adjacent road sections. The strategy ac-
counts for multiple intersections and shows how such optimization yields better results with
respect to the single-segment approach. However nothing is stated about the computation
time and online applicability of the algorithm.

Assuming I2V communication, and therefore full knowledge of the traffic lights timings,
the goal of this work is to analyze the driving horizon and compute an energy-efficient speed
advisory for the driver. As in previous works, stops at a red traffic light are to be avoided. The
novelty of this work is summarized as follows. Given a set of green traffic light phases, there
exist different driving profiles to reach a given destination at a given final time in compliance
with traffic lights constraints (i.e. always catching the green light) and city speed limits. The
presented strategy is capable of an a priori identification of the most energy-efficient veloc-
ity trajectory, by approximating the available paths and their energy cost with an oriented
weighted graph. The computational complexity of the graph creation has been reduced in
this work from exponential [19] to polynomial, thanks to the introduction of the line graph.
The computation time has been consequently significantly reduced. Only after this prelimi-
nary stage of path selection, a formal optimization problem is solved in order to calculate the
optimal arrival times at each intersection, by explicitly minimizing the energy consumption
of the vehicle. This approach qualifies as a pre-trip eco-driving ADAS, since the speed advi-
sory is provided to the driver at the beginning of the driver horizon. However, given the very
little computation time required by the algorithm, it may be employed online thus enabling
in-trip assistance features. This allows to respond dynamically to traffic perturbations and/or
deviations from the speed advisory, and to increase the robustness and the applicability of
the strategy in a realistic environment. Simulations in a microscopic traffic simulator demon-
strate that the proposed strategy is able to deal online with perturbations coming from traffic
and to reduce the overall energy consumption without affecting travel time.

Section 2 introduces the vehicle model and formulates the optimization problem. In Sec-
tion 3 the applied methodology for the sub-optimal solution of the problem is explained in
detail. In Section 4 the algorithm is validated against the true energy consumption calculated
via DP, and robustness capabilities are shown. Concluding remarks are given in Section 5.
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2 Problem Formulation
This work has as objective the minimization of the energy consumed by vehicles in a traffic
network to travel from an initial to a final point, in presence of signalized intersections in
the driving horizon. Clearly this problem is not trivial because the travel time, and more
importantly the acceleration and velocity profiles of a vehicle, are affected by other agents of
the traffic network (i.e. traffic lights), whose actions and priorities may conflict with the time
constraints of the vehicles.

The analysis is carried out for a simplified urban traffic network with vehicles in free
flow, with no constraints coming from other users of the infrastructure. However, we will
show that the algorithm may be employed also in more realistic scenarios where the presence
of multiple vehicles requires the speed advisories to be updated dynamically.

I2V communication is assumed, and the vehicles have full knowledge of the n traffic
lights timings in the driving horizon.

From a mathematical point of view, a constrained optimization problem can be cast. En-
ergy consumption over the trip horizon is to be minimized, subject to the vehicle dynamical
model, and time constraints to impose arrivals at the intersections during a green phase.

2.1 Vehicle Model
Vehicles equipped with electric motors will be considered in this work. The equivalent circuit
model of a DC motor gives [20]:

Va = iaRa + e

e = κωm (1)
Tm = κia

where Va is the armature voltage, ia is the armature current, Ra is the armature resistance,
e is the back electromotive force, κ is the speed constant, ωm is the rotational speed of the
motor, Tm is the electromagnetic motor torque. The motor power supply is converted into
mechanical power and electric power loss due to heating of the armature coil, as follows:

P = Vaia = ωmTm +
Ra

κ2
T 2
m (2)

where Vaia is the electric power supplied to the armature, ωmTm is the actual mechanical
power developed by the armature, and Ra

κ2
T 2
m is the electric power wasted in the armature.

The control input u is represented by the motor torque:

u = Tm (3)

The vehicle longitudinal dynamical model may be generally written as:

m
dv

dt
= Ft − Faero − Ffriction − Fslope (4)

where Ft is the traction force at the wheels, Faero the aerodynamic force, Ffriction the rolling
resistance force, Fslope the gravity force.
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In the following we assume that there are no losses in the transmission, no slip at the
wheels, and that the road slope does not vary in space. In particular, the road slope could be
approximated by an average value. Therefore, the vehicle model shall be written as:{

ẋ = v

mv̇ = uRt

r
− 1

2
ρaAfcdv

2 −mgcr −mg sin(α)
(5)

where Rt is the transmission ratio, r is the wheel radius, m is the vehicle mass, ρa is the
external air density, Af is the vehicle frontal area, cd is the aerodynamic drag coefficient, cr
is the rolling resistance coefficient, α is the road slope, and g is the gravity.

The sum of the aerodynamic and rolling frictions can be approximated as a second order
polynomial in the velocity v:

Fres = Faero + Ffriction = a0 + a1v + a2v
2 (6)

where a0, a1 and a2 are parameters identified in previous works [21, 22].
Under these assumptions the vehicle model can be simplified as follows:{

ẋ = v

v̇ = h1u− h2v
2 − h3v − h0

(7)

with
h1 =

Rt

mr
, h2 =

a2

m
, h3 =

a1

m
, h0 =

a0

m
+ g sin(α) (8)

Therefore, the power demand can be expressed as:

P = b1uv + b2u
2 (9)

where
b1 =

Rt

r
, b2 =

Ra

κ2
(10)

2.2 Traffic Lights Timings
In this study the traffic lights are not actuated, therefore cycle time, phase time and offset are
deterministic and given. It is possible to formulate mathematically the state evolution of the
traffic lights as follows:

si(τ) =

{
1, kT < τ − θi 6 kT + Tgr

0, kT + Tgr < τ − θi 6 (k + 1)T
(11)

where si is the state of the i-th traffic light, k ∈ Z is the number of cycles, T is the
cycle time, Tgr is the duration of the green phase, and θi ∈ [0, T ) is the traffic light offset at
intersection i, for i ∈ {1, . . . , n}.
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2.3 Optimal Control Problem
Finally, the optimization problem may be stated as follows:

min
u

J =

tf∫
t0

b1uv + b2u
2 dt

s.t. ẋ = v

v̇ = h1u− h2v
2 − h3v − h0

x(t0) = d0, x(tf ) = dn+1

x(ti) = di ∧ si(ti) = 1

v(t0) = v0, v(tf ) = vf

vmin ≤ v ≤ vmax

umin ≤ u ≤ umax

(12)

where (t0, d0) are the vehicle coordinates at the origin of the driving horizon, (tf , dn+1) are
the coordinates of the destination of the driving horizon, ti is the crossing time at the i-th
intersection, di is the position of the i-th intersection, for i ∈ {1, . . . , n}, v0 and vf are the
desired initial and final velocities.

A solution to a simpler problem, with no traffic lights and a simplified vehicle model, was
found analytically in [20]. In the case under analysis, the traffic lights introduce an additional
complexity to the problem, expressed mathematically by the constraint:

x(ti) = di ∧ si(ti) = 1 (13)

Equation (13) imposes a non-stop requirement at the signalized intersection, by specifying
that the vehicle has to be at the intersection di at time ti, when the traffic light si is green.
This constraint may result in disjoint sets due to the presence of multiple available green
phases at each intersection, and may affect the convexity of the problem. In other words
the constraint (13) defines a non-convex set, and the nonlinear objective function, because of
such discontinuity in the constraints, assumes multiple local minima. Therefore, the solution
to this optimal control problem has to be sought in a sub-optimal way, by use of algorithms
that simplify the control envelope, recover the convexity of the constraints set and solve the
optimization advising the driver on the velocity to track.

The problem can be solved in a local optimal way by the DP, provided that the selection
of the green phases to be traversed is made a priori. In order to obtain a global optimum,
DP should be run extensively on all the possible paths to find the one with minimum cost.
However its high computational load is clearly not suitable for online uses. In the following,
the results obtained via DP will be used as a benchmark for validation and evaluation of the
employed sub-optimal strategy.

3 Optimization Algorithm
The original optimal control problem (12) will be now divided into sub-problems for the
simplification of constraint (13) and the formulation of a convex optimization problem. The
idea is to identify the best green phase at each intersection, in order to finally optimize over a
single path from origin to destination.
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The methodology may be summarized as in Fig. 1, and described as follows:

1. Pruning algorithm to identify the set of feasible portions of green phases at each inter-
section. The notion of feasibility refers to the time intervals that allow not to stop and
to drive in compliance with the speed limits. The pruning algorithm will reduce the
search space of the best path in the driving horizon.

2. Construction of a weighted directed acyclic graph in the feasibility region to approx-
imate the energy cost of all the possible paths in the driving horizon. Dijkstra’s algo-
rithm is then run on the approximating graph in order to identify the “best” path (i.e.
most energy efficient). With the selection of a single path in the driving horizon, the
optimization problem will become convex.

3. Solution of a simple convex optimization problem to obtain the optimal crossing times
at each intersection through the previously selected feasible green phases.

Figure 1: Block diagram representation of the proposed strategy.

3.1 Pruning Algorithm
The velocity pruning algorithm reduces the search space of available green phases by iden-
tifying only the feasible ones that allow to reach the destination at the specified final time
without stopping, and in compliance with the imposed speed limits.

The algorithm will output {ti,min, ti,max}, for i ∈ {1, . . . , n}, which represent respectively
the minimum and the maximum feasible crossing times at the i-th intersection. The algorithm
may be described as follows:

At each intersection i ∈ {1, . . . , n}, the minimum and the maximum feasible crossing
times ti,min and ti,max are calculated, as indicated in step 2-3 of Algorithm 1. A check on
the feasibility of ti,max is performed in step 4, by checking whether it is possible to reach the
destination in compliance with vmax. If not feasible, ti,max is anticipated to the last feasible
time instant. The two crossing times ti,min and ti,max are verified to belong to a green phase
in steps 5-10. If not, they are set to the first instant of the next green phase (line 6) or the
last instant of the previous green phase (line 9), respectively. Finally a backward check is
performed at each intersection in steps 12-19. If there is any ti,max ≤ ti−1,max or any ti,max that
induces higher speeds than vmax, then ti−1,max is anticipated to the last feasible time instant
(step 14). The new ti−1,max is verified to belong to a green phase in steps 15-17. If not, it is
set to the last instant of the previous green phase.

In case no feasible region is found (i.e. ti,min > ti,max for any i ∈ {1, . . . , n}), a non-stop
trajectory does not exist. However the pruning algorithm is not computationally demanding
and may be quickly run again at the beginning of the next green phase or in case of a triggering
event (e.g. a sudden stop, an unexpected deceleration, a deviation from the advised velocity,
etc.).
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Figure 2: Feasibility region obtained via the pruning algorithm. The labels indicate the
speed of the region boundaries, calculated from ti,min and ti,max. The speed limits were set to
{vmin, vmax} = {5, 14} m/s.

Algorithm 1 Pruning algorithm
1: for i← 1 to n do
2: ti,min = di−di−1

vmax
+ ti−1,min;

3: ti,max = di−di−1

vmin
+ ti−1,max;

4: ti,max = min
{
ti,max, tf − dn+1−di

vmax

}
;

5: if si(ti,min) 6= 1 then
6: ti,min =

(⌊
ti,min
T

⌋
+ 1
)
T + θi;

7: end if
8: if si(ti,max) 6= 1 then
9: ti,max =

⌊
ti,max
T

⌋
T + Tgr + θi;

10: end if
11: end for
12: for i← n to 1 do
13: if ti,max ≤ ti−1,max || di−di−1

ti,max−ti−1,max
> vmax then

14: ti−1,max = ti,max − di−di−1

vmax
;

15: if si−1(ti−1,max) 6= 1 then
16: ti−1,max =

⌊
ti−1,max
T

⌋
T + Tgr + θi−1;

17: end if
18: end if
19: end for

In Fig. 2 an example of feasible region found by the pruning algorithm is shown. It is
easy to observe how the algorithm was capable of reducing the feasible driving domain to the
region bounded by the black lines. The algorithm ensures that inside the feasible region there
exists a trajectory compliant with the speed limits. All the green phases outside the feasible

8



0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

time [s]

d
is

ta
n

c
e

 [
m

]

 1

 2  3

 4  5  6

 7  8  9

10 11 12

13 14

15

Figure 3: Graph of the possible paths within the feasibility region, with 1 node per green
phase (nodes = 15, edges = 22). The labels indicate the ID of the node.

region will be no longer considered because they would induce driving profiles in violation
of the speed limits.

3.2 Optimal Path
After running Algorithm 1, the set of feasible green phases is significantly reduced. However
many possible trajectories from origin to destination are still present, and constraint (13) still
defines disjoint sets, due to the presence of multiple available green phases at each intersec-
tion.

The idea is to approximate, by means of a weighted directed acyclic graph, the energy
cost of all the possible trajectories from the initial to the final point within the feasibility
region, as shown in Fig. 3. The approximation consists in placing the nodes of the graph at
specified crossing times in the feasible intervals of the green phases. The number of nodes
per feasible green phase depends on the fineness of the approximation. In the case of one
node per green phase, the node will be placed at the midpoint of the feasible green interval.
In the case of three nodes per green phase, the nodes will be placed at the midpoint and at the
two ends of the feasible green interval. In case of a finer approximation, the nodes will be
equally spaced, always keeping one node at the phase and two nodes at the two ends of the
feasible green interval.

Therefore, let G = (N,M) be such a graph, where N is the set of vertices (or nodes),
and M is the set of feasible edges (or links) connecting the vertices of the graph. Let pj , for
j = 1, . . . , |N |, be the node identifier. Let us also define a weighting function w : M → W ,
which associates each edge of the graph with a weight. In this application the weight W is
the energy cost to travel along the path, and it may be seen as the sum of two contributions:

W = Etotal = Elink + Ejump (14)

The trip on a link is approximated with constant speed and time-invariant power demand.
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Therefore, the associated energy consumption is defined as:

Elink = ∆T
(
b1ūiv̄i + b2ū

2
i

)
(15)

where v̄i = di−di−1

∆T
is the constant velocity on the edge, and ūi = 1

h1
(h2v̄

2
i + h3v̄i + h0) from

(7), for i ∈ {1, . . . , n+ 1}. The link travel time is defined as ∆T = τpl − τpj , for every edge
(pj, pl) ∈ M , and pj, pl ∈ N , with τ being the crossing time associated with the relative
vertex.

The energy consumption associated with the change of velocity at a node between two
edges is defined as:

Ejump =

∫ tjump

0

b1u(t)v(t) + b2u(t)2 dt (16)

where u(t) = 1
h1

(v̇(t) + h2v(t)2 + h3v(t) + h0) from (7), and v(t) is the time-varying ve-
locity in every transient linearly modeled as v(t) = v̄in ± a · t, with a being a constant fixed
acceleration, v̄in the constant velocity on the incoming edge to the node. The speed change is
assumed to be performed in tjump = |v̄out−v̄in|

a
, with v̄out being the constant velocity on the out-

going edge from the node. Note that regenerative braking is not considered in this analysis,
therefore Ejump is not negative.

The main challenge of such graph approximation is represented by the weight assignment
to the edges. Every node of the graph with two or more incoming edges is critical because v̄in

is not unique, and this generates multiple contributions Ejump for the outgoing edge. There-
fore, the critical nodes need to be “decoupled” in order to have a correct weight assignment.

One option to deal with this problem is to transform the directed acyclic graph into the
tree of all the possible paths [19]. This approach has an exponential complexity and its
computational load might increase significantly with the size of the approximating graph.

A more efficient solution, in terms of memory allocation and computational load, is pro-
posed in this work, and it is represented by the extension of the original graph into a line
digraph [23].

The line graph, L(G) of a graph G has as vertices the edges of G, and two vertices of
L(G) are adjacent whenever the corresponding edges of G are adjacent. The in-degree id(pj)
of a vertex pj is the number of edges incident to pj (the inlines at pj), while its out-degree
od(pj) is the number of edges leaving pj (the outlines at pj). A point with no inlines is a
source, one with no outlines is a sink.

Let G = (N,M) be the graph with N nodes and M edges as before. Then in L(G) =
(N∗,M∗), the number of nodes is |N∗| = |M | and the number of edges is:

|M∗| =
|N |∑
j=1

id(pj) · od(pj)

The adoption of the line graph allows to solve the criticality of the original graph by
intrinsically decoupling the nodes with multiple incoming edges. The problem boils down to
assigning to each edge of the line graph a weight corresponding to the sum of Elink relative
to the edge indicated in the identifier of the destination node, and Ejump relative to the speed
change when coming from the link indicated in the origin node (see Fig. 4). Furthermore,
the size of L(G) is smaller than the size of the tree of all the possible paths [19]. The number
of nodes in the expanded tree grows with an exponential law, whereas the number of nodes
of the line graph grows with a polynomial law (namely quadratic).
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Figure 4: Line graph of the original graph in Fig. 3 (nodes = 24, edges = 34). The labels
indicate the node identifier in the line graph, that is the corresponding link in the original
graph.

Having as objective the online adoption of the algorithm, further improvements can be
achieved by exploiting the specific structure of the graph. The adjacency matrix of a directed
acyclic graph is highly sparse, in fact all the diagonal and lower-diagonal terms are zero.
The high sparsity of the adjacency matrix leads to very inefficient memory management and
matrix operations, therefore it is highly beneficial to define the directed graph as a list of
edges.

By adding the two fictitious nodes S and D in the line graph, the structure of a directed
graph with one source and one destination is recovered. At this point, Dijkstra’s algorithm
can be run on the line graph in order to obtain the most energy efficient path from origin to
destination on the approximating graph. Dijkstra’s algorithm will return the optimal nodes to
be traversed, which will be mapped back into the optimal path on the original graph. In Table
1, the possible paths and their identifiers are reported..

Table 1: Possible paths in the original graph

Path Path Identifier Path Path Identifier
1-2-4-7-10-13-15 1 1-2-5-8-12-14-15 9
1-2-4-7-11-13-15 2 1-2-5-9-12-14-15 10
1-2-4-7-11-14-15 3 1-3-5-8-11-13-15 11
1-2-4-8-11-13-15 4 1-3-5-8-11-14-15 12
1-2-4-8-11-14-15 5 1-3-5-8-12-14-15 13
1-2-4-8-12-14-15 6 1-3-5-9-12-14-15 14
1-2-5-8-11-13-15 7 1-3-6-9-12-14-15 15
1-2-5-8-11-14-15 8
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3.3 Simplified Optimization Problem
Once Dijkstra’s algorithm has provided the most efficient energy path on the approximating
graph, the problem can be finally formulated as a convex optimization. The disjoint sets given
by constraint (13) are resolved, and only one time interval per intersection represents now the
optimization domain. The mathematical formulation may be carried out in multiple ways.
However, defining the objective as a function of speed would result into nonlinear constraints,
which would slow down the solution of the problem [19]. A more efficient formalization
makes use of the crossing times at each intersection as decision variables of the optimization
problem. Thus the constraints become constant.

Let us first define a vector of optimization variables (crossing times at intersections),
supposing n to be the number of intersections:

x = [t1, t2, . . . , tn]T ∈ Rn (17)

Then a vector of travel times for each segment is defined:

t = t(x) = [t1 − t0, t2 − t1, . . . , tn − tn−1, tf − tn]T (18)

Knowing the position of the traffic lights, let us then define the vector of the constant veloci-
ties in each segment:

v = v(x) = [v1, v2, . . . , vn, vn+1]T

=

[
d1 − d0

t1 − t0
,
d2 − d1

t2 − t1
, . . . ,

dn − dn−1

tn − tn−1

,
dn+1 − dn
tf − tn

]T
(19)

where di is the position of the i-th traffic light with respect to the origin, d0 is the origin, dn+1

is the destination, tf is the horizon time, and t ∈ Rn+1, v ∈ Rn+1.
The objective function is the same as the one in the original optimization problem (12):

J =

tf∫
t0

P dt =

tf∫
t0

b1uv + b2u
2 dt (20)

By using the same procedure as in the graph weights assignment, we may split the ob-
jective function into an energy term related to the segments traveled at constant velocity, and
an energy term related to the velocity variations between subsequent segments. Therefore, it
may be rewritten as:

J(x) = tT P̄ (v) +
n+1∑
i=0

Ejump (21)

where P̄ (V) is the power required by the vehicle when traveling at constant velocity (no
velocity variation in time):

P̄ (v) = b1ū(v)v + b2ū(v)2 (22)

with
ū(v) =

1

h1

(
h2v

2 + h3v + h0

)
(23)
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Finally the optimization problem may be formulated as:{
min
x

J(x)

max
{
t−i , ti,min

}
≤ ti ≤ min

{
t+i , ti,max

} (24)

where t−i and t+i are constants and represent the end times of the selected green phase at each
intersection i ∈ {1, . . . , n}, and ti,min and ti,max are the minimum and the maximum feasible
crossing times returned by the pruning algorithm.

4 Simulation results
In the following, the performance of the proposed sub-optimal algorithm is compared to the
optimal solution provided by DP [24].

Table 2: Simulation parameters

(a) Vehicle parameters

Parameter Value
m 1190 kg
r 0.2848 m
Rt 6.066
a 1.5 m/s^2
α 0 rad
a0 113.5 N
a1 0.774 N/(m/s)
a2 0.4212 N/(m/s)^2
b2 0.1515 Ω

(b) Scenario parameters

Parameter Value
T 30 s
Tgr 10 s
n 5

θ1,...,n [13, 3, 28, 15, 5] s
tf 200 s
dn+1 2000 m
t0 0 s
d0 0 m

d1,...,n [300, 600, 900, 1200, 1550] m
vf 10 m/s
vmin 5 m/s
vmax 14 m/s

4.1 Control Scenario
The case under study presents a scenario with only one vehicle in the traffic network. How-
ever it can be conceptually extended to the case of multiple vehicles in free flow, each
equipped with the presented algorithm. Traffic effects, such as inter-distance constraints and
pedestrians cross-walks, are taken care of by new runs of the algorithm.

The vehicle is supposed to be traveling through n = 5 signalized intersections, along a
road stretch of 2000 m on a total time horizon of 200 s. The distance between the intersections
is about 300 m. The choice of the final time and distance of the driving horizon is made in
such a way to keep a realistic overall average speed of about v = 10 m/s. The vehicle
objective is to follow an energy optimal velocity profile which allows to find all the traffic
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Figure 5: Comparison of DP and proposed strategy energy consumption calculation on all
the feasible paths. Two cases with different initial speeds are reported. In green the most
energy-efficient path.

lights on green. No assumption is made on the existence of a “green wave”. Clearly its
existence would enable an easier solution, which the presented algorithm is able to find. The
problem is made more challenging and interesting by the random disposition of the green
phases, and consequently by the presence of more trip options. The green phase duration is
10 s, the total cycle time is set to 30 s. Note that, although some traffic lights might be phased
so to give rise to a “green wave”, the distribution of the green phases may be such that the
velocity of the wave is not energy optimal.

The initial velocity of the vehicle (i.e. the initial kinetic energy) is varied throughout the
simulations to assess its impact on the energy consumption and on the optimal path. Traffic
lights timings, final velocity, horizon are fixed for consistency in results comparison. The
objective of the performed simulations is to prove the importance of a methodology which
allows to achieve a fast sub-optimal solution suitable for online implementation and eco-
driving assistance service.

The employed simulation parameters are provided in Table 2.

4.2 Optimal Path Validation
The first set of experiments aims at validating the pruning algorithm and the optimal path
identification. DP, used in the following as a benchmark, provides the optimal solution to the
problem, and it is used to compute the energy cost of all the possible paths in the feasible
region.

Simulations have been run varying the initial velocity of the trip, which has an impact on
the optimal path. In the scenario under study the vehicle does not stop at any intersection in
the feasibility region shown in Fig. 3.

In Fig. 5 the energy consumption for each path computed via DP is compared with
the energy consumption approximation yielded by the proposed strategy. The results for
two different choices of initial velocity are reported after normalization with respect to the
maximum DP-cost path in each configuration. The minimum cost path, for each case, is
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Table 3: Optimal path identification (Graph vs. DP)

XXXXXXXXXXXXGraph
v0 [m/s]

5 6 7 8 9 10 11 12 13 14

1 node/green phase 15 15 15 15 3 3 3 3 3 3
3 nodes/green phase 12 12 12 12 12 3 3 3 3 3
DP (optimal path) 12 12 12 12 12 3 3 3 3 3

highlighted in green. The path ID in abscissa refers to Table 1.
The energy cost approximation obtained with the proposed strategy is very close to the

true energy cost computed with DP. The root-mean-square error (RMSE) of our approxima-
tion with respect to the true cost was calculated for the two experiments shown in Fig. 5. It
has been then normalized with respect to the mean value of the energy costs calculated via
DP for each case. In the case of initial velocity v0 = 9 m/s, the normalized RMSE is 6.3%.
In the case of v0 = 10 m/s, the normalized RMSE is 7.7%.

The energy consumption varies depending on the path choice; in the worst case, the
choice of a path rather than the optimal one, results to be up to 25% more expensive in terms
of energy. In Fig. 5 the DP and the proposed strategy results for only v0 = 9 m/s and v0 = 10
m/s are reported. For speeds v0 ≥ 10 m/s, the energy-optimal path is always path number 3;
for speeds v0 ≤ 9 m/s the optimal path is always path number 12.

The accuracy of the graph approximation, as well as the computational load, increases
with the number of nodes per green phase. A graph with one node per green phase, as shown
in Fig. 3, and a graph with three nodes per green phase (one at the mid-point and two at the
ends) have been tested, and the optimal path identification obtained with Dijkstra’s algorithm
is validated against the true minimum-energy path, found via DP.

As summarized in Table 3, the graph with 3 nodes per green phase approximates better
the whole energy cost, never failing, whereas the smaller graph fails in five cases. Clearly
there exist other graph configurations where the approximation with 3 nodes per green phase
does not always provide the right identification of the energy-optimal path. One can increase
the discretization level (i.e. use more nodes per green phase), increasing consequentially also
the computational load. Thanks to the newly introduced line graph expansion, the computa-
tional time does not grow as dramatically as with the tree expansion, so this becomes more
affordable. Nevertheless this is a sub-optimal solution, the path identification is not flawless,
and a trade-off between fineness of discretization and computational effort is required. How-
ever, it is possible to note that even a graph with a less fine discretization is able to provide a
path identification that is not far from the true optimal one. For instance, as reported in Table
3, the graph with 1 node per green phase fails for v0 = 9 m/s, suggesting path number 3,
which is only 2% more costly than the true optimal one, as shown in Fig. 5.

4.3 Optimal Crossing Times
Finally, once Dijkstra’s algorithm provides the optimal green phases, the optimal crossing
times at each intersection are to be calculated, in order to provide the eco-driving assistance
by suggesting a velocity profile to the driver. The solver employed to solve the optimization
problem (24) in MATLAB R© is fmincon, using the interior-point method algorithm.

In Fig. 6, the optimal solution provided by DP through the optimal green phases (path 12
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Figure 6: Sub-optimal crossing times compared to the optimal solution provided by DP, for
two different initial speeds.

Table 4: Time deviation from the optimal crossing times

Int. #1 Int. #2 Int. #3 Int. #4 Int. #5
v0 = 9 m/s 0.03 s 0.62 s 0.03 s 0.07 s 0.5 s
v0 = 10 m/s 0.22 s 0.36 s 0.05 s 0.08 s 0.4 s

Overall average deviation: 0.23 s

for v0 = 9 m/s and path 3 for v0 = 10 m/s) is compared to the sub-optimal proposed solution.
In Table 4 the time deviations of the sub-optimal solution from the DP solution at the five
intersections are summarized, for the two different initial velocities.

The simulations were run with a laptop equipped with an Intel(R) Core(TM) i7-2760QM
at 2.40GHz and 8GB of RAM. DP takes about 2.5 hours per path to provide the optimal solu-
tion. In order to have an assessment of the cost of all paths and find the minimum-energy one,
DP has to be run as many times as the number of possible paths. The proposed methodology
takes 1.2 seconds (graph 3 nodes/green phase) or 0.85 seconds (graph 1 node/green phase)
to run all the steps presented in Fig. 1 and provide the sub-optimal crossing times at each
intersection.

4.4 Robustness of the Algorithm
As already mentioned, the algorithm is capable of coping with unexpected deviations from
the suggested trajectory and handling new information coming from the traffic network in a
receding-horizon fashion. The horizon can be thought of as the range of the wireless I2V
communication.

The following simulation results show how new runs of the algorithm can provide new
speed advisory in case of triggering events.

Let us recall once again, on the left-hand side of Fig. 7, Dijkstra’s optimal path relative
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Figure 7: The graph on the left shows the path suggested by Dijkstra’s algorithm for v0 = 10
m/s, when going from the origin (0, 0) to the horizon (200, 2000). The graph on the right
shows the suggested path when the origin is moved to the point of coordinates (70, 700).

to the simulation scenario described so far, and for an initial velocity v0 = 10 m/s. Let
us suppose now that an unexpected event occurs at time t = 70 seconds, and the equipped
vehicle has to slow down or stop, thus deviating from the suggested trajectory. A new run
of the algorithm shows that it is still possible to recover from the perturbation and reach the
desired horizon at the desired final time. Evidently, the new feasibility region is smaller, the
approximating graph also will be smaller, leading to a smaller set of available paths and a
faster solution of the algorithm. On the right-hand side of Fig. 7, the new Dijkstra’s optimal
path is shown, while the old one is left dotted in the background for the sake of comparison.

Let us show now an example of the receding-horizon capabilities of the algorithm. The
coordinates of the horizon are assumed to change as new information from the traffic network
is collected. Let the point of coordinates (70, 700) be the new origin of the driving horizon,
that is the point of the occurred perturbation as discussed above. New timings information
are received from the traffic lights and two new intersections appear in the driving horizon,
which now has as destination the point of coordinates (230, 2500). The algorithm is run on
the new horizon, defining a new feasibility region, a new approximating graph, and providing
again the optimal crossing times at each intersection in order to reach the new destination
without stopping. On the left-hand side of Fig. 8, Dijkstra’s optimal path is shown, in case the
vehicle is able to recover quickly from the perturbation and be at the new origin with an initial
velocity v0 ≥ 9 m/s. However, if the vehicles is forced to stop or slow down considerably
(v0 < 9 m/s), the optimal trajectory to reach the desired destination at the desired time is
reported on the right-hand side of Fig. 8.

4.5 Microscopic Traffic Simulator
As mentioned, in this work the energy-optimal trajectory is obtained under the assumption
of one vehicle in free flow conditions (i.e. unperturbed by the presence of other vehicles).
The assumption was made for the purpose of a simpler and more abstract analysis of the
optimization problem. However, the strategy robustness properties demonstrated that the
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Figure 8: The graph on the left shows the path suggested by Dijkstra’s algorithm for v0 ≥ 9
m/s, when going from the new origin (70, 700) to the new horizon (230, 2500). The graph on
the right shows the suggested path when the initial velocity is v0 < 9 m/s.

algorithm is capable of dealing with perturbations coming from other agents of the traffic
network. The optimal path is quickly recalculated in the event of deviation from the original
speed advisory.

In order to prove the actual capabilities of the proposed strategy in a more realistic sce-
nario, the traffic microscopic simulator Aimsun has been used. The road topology treated in
this work and shown in Fig. 2 has been faithfully replicated in Aimsun, as well as the traffic
lights position and signal timings. A flow of 400 vehicles per hour has been set to enter the
road network at the initial speed v0 = 10 m/s. The vehicles have been equipped with the algo-
rithm here presented and, evidently, the assumption of unperturbed vehicles in such realistic
scenario does not hold anymore. In particular, being each vehicle independently equipped
with the algorithm and entering the network at different time instants, the speed advisories
may conflict with one another causing deviations from the optimal speed advisory.

The experiment has been set up in such a way that only one lane is available and no pass
is allowed, in order to generate as many perturbations as possible to the speed advisories.
Note that the space coordinate of the origin d0 is the same for all vehicles, whereas the time
coordinate of the origin t0 is different for every vehicle. This evidently affects the time
coordinate of the destination of the driving horizon, but not its time span, which is the same
for all vehicles. The online adaptation of the proposed strategy in the multi-vehicle scenario
is quite simple and intuitive. When a new vehicle enters the network, the algorithm is run
and the optimal crossing times at each intersection are calculated. The optimal crossing
times are then converted in speed advisory, which is continuously updated according to the
current position of the vehicle. When the suggested speed grows larger than the maximum
speed limit, meaning that a perturbation has occurred, the algorithm is run again. The time
horizon is not extended if a new optimal trajectory can be found, otherwise small successive
extensions of the time horizon are recursively tried until an optimum is found.

Several experiments were conducted at different levels of penetration rate of the pro-
posed technology (i.e. percentage of equipped vehicles), in order to assess the impact of the
proposed algorithm on the traffic energy consumption. For the sake of results consistency
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Figure 9: Variation of traffic energy consumption with respect to the technology penetration
rate. The red line describes the average energy consumption at the different penetration rates.

Table 5: Traffic performance metrics

Energy Consumption Travel Time N. of Stops Idling Time
Penetration Rate 0% 2*10E8 J 213.9 s 2.7 37.9 s
Penetration Rate 100% 1.43*10E8 J 205.7 s 0 0 s

and comparison, the vehicle average travel time is set to be the same independently of the
penetration rate. In other words, the proposed algorithm was set up in order to achieve the
same travel time as in the uncontrolled case (i.e. all vehicles traveling at the maximum speed
limit). A statistical analysis conducted for the different levels of technology penetration rate
demonstrated that the average travel time can be considered as constant: mean value of 208.5
seconds, and standard deviation of 3.8 seconds (i.e. 1.8% of the mean value).

In Fig. 9, the variation of traffic energy consumption with respect to the technology
penetration rate is shown. The proposed strategy has been applied to a gradually increasing
number of vehicles in the road network. At penetration rate equal to 0%, the experiment
has been conducted with no vehicle equipped with the algorithm, and all the vehicles were
allowed to drive up to the maximum speed limit. For penetration rates greater than 0%,
a total of 10 simulations per each tested value has been run. The equipped vehicles were
chosen randomly, and it is possible to observe that the order of “smart” vehicles in traffic
can affect significantly the energy consumption. As expected, a penetration rate of 100%
results to be highly beneficial with respect to the uncontrolled case in terms of several traffic
performance metrics (see Table 5). A reduction of 28.5% in traffic energy consumption has
been observed, without affecting the average travel time. More specifically, the average travel
time results to be even smaller than the uncontrolled case by 4%. The stops and the idling
time are completely eliminated.
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One may argue that a global deployment of the proposed strategy would be difficult to
achieve in a close future. A penetration rate of 40% is more realistic and results to be already
appealing in terms of energy consumption, yielding an average reduction of about 10%.

5 Conclusions
The exchange of information between the infrastructure and the vehicles (I2V) has been
proved in literature to be beneficial in terms of traffic energy consumption. This work
focuses on the possibility of further improvements when information about many succes-
sive signalized intersections is available. The presented algorithm is capable of finding the
energy-efficient path among all the available ones, and returning the speed advisory to the
drivers, in a sub-optimal way. The length of the optimization horizon can be arbitrarily long.
The only limitations come from the I2V communication range and/or online execution con-
straints. However, for the already complex scenario analyzed in this study, the computation
time required by the algorithm is very appealing for online implementation purposes. The
robustness capabilities of the algorithm have been also presented, by showing how perturba-
tions and deviations from the suggested trajectory are handled. In particular, experiments in
a microscopic traffic simulator demonstrated that, even in presence of multiple vehicles, the
proposed algorithms is able to cope with perturbations and to drastically reduce the traffic
energy consumption without affecting travel time.

The experiments in the microscopic traffic simulator highlighted the fact that a perfor-
mance improvement is achievable even though the vehicles are independently equipped with
the proposed algorithm and do not exchange information among them. Further improvements
could be achieved by exploiting V2V communication and by sharing information among the
vehicles about their own optimal trajectory. Moreover, if the traffic flow grows larger, con-
gestion and queues become inevitable. More sophisticated methods would be required, such
as macroscopic models for the estimation of the queue length. In such a situation the problem
of eco-driving changes its nature, and a different analysis would be necessary. Lastly, an en-
ergy consumption model for electric vehicles was considered in this work. Different energy
and/or emissions models could be introduced into the problem, without any loss of generality
for the proposed strategy.
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