M. Pierre, J. Adler, and . Thovert, Fractures and fracture networks, 1999.

P. M. Adler, J. Thovert, and V. V. Mourzenko, Fractured porous media, 2012.
DOI : 10.1093/acprof:oso/9780199666515.001.0001

URL : https://hal.archives-ouvertes.fr/hal-00477715

C. Alboin, J. Jaffré, J. E. Roberts, X. Wang, and C. Serres, Domain Decomposition for Some Transmission Problems in Flow in Porous Media, Lecture Notes in Phys, vol.552, pp.22-34, 2000.
DOI : 10.1007/3-540-45467-5_2

P. Angot, F. Boyer, F. Hubert, R. G. Baca, R. C. Arnett et al., Asymptotic and numerical modelling of flows in fractured porous media, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.2, pp.239-275337, 1984.
DOI : 10.1051/m2an/2008052

URL : https://hal.archives-ouvertes.fr/hal-00127023

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp et al., PETSc users manual, 2013.

J. Bear, C. Tsang, and G. Marsily, Flow and contaminant transport in fractured rock, 1993.

B. Berkowitz, Characterizing flow and transport in fractured geological media: A review, Advances in Water Resources, vol.25, issue.8-12, pp.8-12861, 2002.
DOI : 10.1016/S0309-1708(02)00042-8

D. Biryukov and F. J. Kuchuk, Transient pressure behavior of reservoirs with discrete conductive faults and frac- tures. Transport in Porous Media, pp.239-268, 2012.

K. Brenner, M. Groza, C. Guichard, and R. Masson, Vertex Approximate Gradient Scheme for Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.2, pp.303-330, 2015.
DOI : 10.1051/m2an/2014034

URL : https://hal.archives-ouvertes.fr/hal-00910939

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Computational Mathematics, vol.15, 1991.
DOI : 10.1007/978-1-4612-3172-1

D. Carlo, A. Angelo, and . Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids, Mathematical Modelling and Numerical Analysis, vol.46, issue.02, pp.465-489, 2012.

J. Droniou, R. Eymard, and T. Gallouët, A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS, Mathematical Models and Methods in Applied Sciences, vol.20, issue.02, pp.265-295, 2010.
DOI : 10.1142/S0218202510004222

URL : https://hal.archives-ouvertes.fr/hal-00346077

A. Ern and J. Guermond, Theory and practice of finite elements. Applied mathematical sciences, 2004.

R. Eymard, T. Gallouët, and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis, Comptes Rendus Mathematique, vol.344, issue.6, pp.403-406, 2007.
DOI : 10.1016/j.crma.2007.01.024

R. Eymard, T. Gallout, and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA Journal of Numerical Analysis, vol.30, issue.4, pp.1009-1043, 2010.
DOI : 10.1093/imanum/drn084

I. Faille, E. Flauraud, F. Nataf, S. Pégaz-fiornet, F. Schneider et al., A new fault model in geological basin modelling. Application of finite volume scheme and domain decomposition methods, Finite volumes for complex applications, III (Porquerolles, pp.529-536, 2002.

I. Faille, F. Nataf, L. Saas, and F. Willien, Finite Volume Methods on Non-Matching Grids with Arbitrary Interface Conditions and Highly Heterogeneous Media A reduced model for Darcy's problem in networks of fractures, Domain Decomposition Methods in Science and Engineering, pp.243-2501089, 2005.

N. Frih, V. Martin, J. E. Roberts, and A. Saâda, Modeling fractures as interfaces with nonmatching grids, Computational Geosciences, vol.16, issue.2, pp.1043-1060, 2012.
DOI : 10.1007/s10596-012-9302-6

URL : https://hal.archives-ouvertes.fr/inria-00561601

N. Frih, J. E. Roberts, and A. Saada, Modeling fractures as interfaces: a model for Forchheimer fractures, Computational Geosciences, vol.25, issue.7, pp.91-104, 2008.
DOI : 10.1007/s10596-007-9062-x

URL : https://hal.archives-ouvertes.fr/inria-00207993

A. Fumagalli and A. Scotti, A numerical method for two-phase flow in fractured porous media with non-matching grids, Computational Methods in Geologic CO2 Sequestration, pp.454-464, 2013.
DOI : 10.1016/j.advwatres.2013.04.001

A. Fumagalli and A. Scotti, An efficient xfem approximation of darcy flow in arbitrarly fractured porous media. Oil and Gas Sciences and Technologies -Revue d'IFP Energies Nouvelles, pp.555-564, 2014.

H. Haegland, A. Assteerawatt, H. K. Dahle, R. Geir-terje-eigestad, and . Helmig, Comparison of cell- and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture???matrix system, Advances in Water Resources, vol.32, issue.12, pp.1740-1755, 2009.
DOI : 10.1016/j.advwatres.2009.09.006

H. Hoteit and A. Firoozabadi, Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media, Water Resources Research, vol.3, issue.2, 2005.
DOI : 10.1029/2005WR004339

H. Hoteit and A. Firoozabadi, An efficient numerical model for incompressible two-phase flow in fractured media, Advances in Water Resources, vol.31, issue.6, pp.891-905, 2008.
DOI : 10.1016/j.advwatres.2008.02.004

H. Huang, T. A. Long, J. Wan, and W. P. Brown, On the use of enriched finite element method to model subsurface features in porous media flow problems, Computational Geosciences, vol.33, issue.12, pp.721-736, 2011.
DOI : 10.1007/s10596-011-9239-1

J. Jaffré, M. Mnejja, and J. E. Roberts, A discrete fracture model for two-phase flow with matrix-fracture interaction, Procedia Computer Science, vol.4, pp.967-973, 2011.
DOI : 10.1016/j.procs.2011.04.102

M. Karimi-fard, L. J. Durlofsky, and K. Aziz, An Efficient Discrete-Fracture Model Applicable for General-Purpose Reservoir Simulators, SPE Journal, vol.9, issue.02, pp.227-236, 2004.
DOI : 10.2118/88812-PA

M. Karimi-fard and A. Firoozabadi, Numerical Simulation of Water Injection in Fractured Media Using the Discrete-Fracture Model and the Galerkin Method, SPE Reservoir Evaluation & Engineering, vol.6, issue.02, pp.117-126, 2003.
DOI : 10.2118/83633-PA

P. Knabner and J. E. Roberts, Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy???Forchheimer flow in the fracture, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.5, pp.1451-1472
DOI : 10.1051/m2an/2014003

URL : https://hal.archives-ouvertes.fr/hal-00945028

V. Martin, J. Jaffré, and J. E. Roberts, Modeling Fractures and Barriers as Interfaces for Flow in Porous Media, SIAM Journal on Scientific Computing, vol.26, issue.5, pp.1667-1691, 2005.
DOI : 10.1137/S1064827503429363

URL : https://hal.archives-ouvertes.fr/inria-00071735

J. E. Monteguado and A. Firoozabadi, Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media, Water Resources Research, vol.3, issue.2, 2004.
DOI : 10.1029/2003WR002996

F. Morales, R. E. Showalter, R. E. Morales, and . Showalter, The narrow fracture approximation by channeled flow Interface approximation of darcy flow in a narrow channel, Journal of Mathematical Analysis and Applications Mathematical Methods in the Applied Sciences, vol.36535, issue.352, pp.320-331182, 2010.

A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, of Springer Series in Computational Mathematics, 1994.

H. Volker-reichenberger, P. Jakobs, R. Bastian, and . Helmig, A mixed-dimensional finite volume method for two-phase flow in fractured porous media, Advances in Water Resources, vol.29, issue.7, pp.1020-1036, 2006.
DOI : 10.1016/j.advwatres.2005.09.001

E. Jean, J. Roberts, and . Thomas, Mixed and hybrid methods In Handbook of numerical analysis, Handb. Numer. Anal., II, vol.II, pp.523-639, 1991.

X. Tunc, I. Faille, T. Gallouët, M. C. Cacas, and P. Havé, A model for conductive faults with non-matching grids, Computational Geosciences, vol.81, issue.6, pp.277-296, 2012.
DOI : 10.1007/s10596-011-9267-x