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Abstract
To assist industrial engine design, 3D simulations are increasingly used as they allow evaluation of a wide range
of engine con�gurations and operating conditions and bring a comprehension of the underlying physics comple-
mentary to experiments. While the gaseous �ow description has reached a certain level of maturity, the multiphase
�ow description involving the liquid jet fuel injected into the chamber still faces some major challenges. There is
a pressing need for a spray model that is time ef�cient and accurately describes the fuel-particle cloud dynamics
downstream of the injector, which is an essential prerequisite for predictive combustion simulations. Due to the
highly unsteady nature of the �ow following the high-pressure injection process and the complexity of the �ow
regimes from separated/dense compressible phases to fully developed turbulent spray with evaporating droplets,
Eulerian-Eulerian descriptions of two-phase �ows are seen as very promising approaches towards realistic and
predictive simulations of the mixing process. However they require some effort in terms of physical modeling
and numerical analysis related to the more complex mathematical structure of the system of equations and to the
unclosed terms appearing in space/time-average equations. Among the various challenges faced, one critical as-
pect is to capture spray polydispersity in this framework. A review of recent developments that have permitted
key advances in the spray modeling community is proposed in this paper. It is divided into four parts. First, an
introduction to automotive spray modeling is provided. Then the formalisms for the description of the disperse
region of an engine spray are presented with particular emphasis on the pros and cons of classical Lagrangian par-
ticle methods versus Eulerian approaches. The third part presents the motivation for and the recent developments
of Eulerian high-order moment methods for size polydispersion. Finally, the extension to fully two-way coupled
interactions with the gas phase and the implementation of such methods for variable-geometry applications in CFD
codes is described in the fourth part. Using realistic direct injection conditions computed with the IFP-C3D solver,
the application and ef�ciency of Eulerian approaches is illustrated.
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1 Introduction

The transportation sector is a key element for economic development for every country in the world. Fossil fuels
(gasoline, diesel, natural gas, ...) are the main source of energy for road transportation, through their use in internal
combustion (IC) engines, and will certainly prevail in the near future. In this context, car and engine manufacturers
have to face various constraints and expectations, in relation with the engine ef�ciency and emissions [52] and
which are sometimes contradictory:

� Need to reduce signi�cantly green house effect gases, among them CO2. Road transportation is responsible
for one third of emissions originating from human activities on earth.

� Reduction of fossil reserves inducing a necessary diversi�cation of fuel origins for internal combustion
engines (biofuels, synthesis fuels) and research for alternate solutions (partial or full electri�cation).

� More stringent regulations on emissions, such as particles, NOx, unburnt hydrocarbons and a growing num-
ber of regulated pollutants in the near future.

� Need to increase competitiveness in a challenging worldwide industrial sector.

To meet social demands for more ef�cient transport that is less polluting and compatible with sustainable
development, the automotive industry has to propose new technological solutions. One of these solutions is to
introduce hybrid or even pure electrical power units. As compared to classical engines, the ef�ciency of electrical
or hybrid engines is better for urban mobility purposes, however, it shrinks drastically for long distance travel.
In this context, it appears that the development of high ef�ciency thermal engine technologies could represent an
important contribution to economically viable and environmentally friendly road transportation. From this point of
view, direct injection technologies for both spark and compression ignition engines offer potential bene�ts in terms
of speci�c power, combustion ef�ciency and control �exibility compared to more classical injection technologies.
The evolution of regulations on pollutant emissions requires much more effort to understand and model physical
processes associated with these technologies and their applications.

The increasing complexity of engine systems requires more and more advanced design tools including numer-
ical simulation. Reduction of design delays imposes the use of numerical tools and a reduced number of costly
prototypes. Present developments are related to 3D modeling of two-phase �ows for which one application is direct
fuel injection. The role of modeling is to enable a description of the physical mechanisms in view of understanding
and analysis. On the one hand, it gives access to information that is not directly attainable through experiments.
On the other hand, the question of validity of the approaches is the central preoccupation with which one has to
cope. Figure 1 illustrates schematically (with a few examples of technical solutions related to IC engines) how
accounting for engine sprays is at the heart of present issues (pollutant reduction, ef�ciency improvement, fuel
diversi�cation) and which motivated the model developments presented in the following sections.

The presence of a spray in the combustion chamber implies a number of challenges for numerical simulations
resulting from the complex liquid phase topology (primary and secondary atomization),coupled physical processes
(liquid/gas mass, momentum and energy exchanges) and large temporal and spatial scale variations. This issue is
transversal to several injection applications (not only direct injection engines) and a few illustrations of experi-
mental results for practical situations are given in Figure 2. Although the characteristic dimensions and time scales
are very different between all of these devices, one can notice some similarities; in particular, on the nature of the
interface between the light and the dense �elds. One can clearly measure the interest for an Eulerian formulation
capable of coherently describing the two-phase �ows in such situations.

Modeling approaches have recently bene�ted from the increase of computational power, permitting to carry
out much more detailed simulations of these intricate phenomena. Before entering into the details of the models,
it is useful to situate their development in the global context of two-phase �ow modeling and in particular that
of Eulerian approaches. First, models for disperse two-phase �ows are numerous and have been the subject of
fundamental and applied studies starting with Lagrangian methods [73]. These approaches are still widely used in
industry as they can be easily implemented, have high numerical precision and can cover a range of applications
that is suf�ciently large. The �rst type of Lagrangian method is the Discrete Particle Simulation (DPS) which
consists of tracking each individual physical droplet in the spray [101, 94, 130]. The effect of particle volume
occupation on the surrounding �uid �ow is not resolved and the �uid particle global mass, momentum and en-
ergy interactions are modeled under the form of a point particle assumption. On the other hand, the Lagrangian
Stochastic Parcel (SP) approach has been developed in [93, 31] to supply DPS in con�gurations where the high
number of physical droplets prevents to use one numerical particle for each droplet, given the high computational
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Figure 1. Illustration of the importance of spray formation understanding and modeling for future automotive
engine developments in view of reaching an environmentally friendly and economically viable road transporta-
tion. Two-phase �ows are in the heart of internal combustion engines predictive simulations (internal injector �ow,
spray/gas turbulent interactions, spray/combustion interactions, spray/wall interactions) as illustrated here. Exam-
ples are given for (1) two-way coupled full Eulerian high pressure injection simulations [117], (2) Diesel engine
combustion simulation and analysis [77], (3) Dual-Fuel combustion regimes investigations [6, 5] and (4) injector
internal cavitating �ow simulations [48].

cost associated. In SP, each numerical particle, also called parcel, represents several physical droplets. While
DPS and SP methods represent the single realization of a particles �ow, the least Lagrangian method called Direct
Simulation Monte Carlo (DSMC) provides an other modeling option, describing a statistical representation of the
particles �ow through ensemble averaging of multiple realizations [109, 110, 8]. In fact, DSMC can be considered
as a resolution of William Boltzmann equation based on the kinetic spray modeling [123, 124]. DSMC requires
many numerical particles to represent each individual physical droplet, leading higher re�nement level than in
DPS. On the contrary, the SP method aims at coarsening the DPS description, thus is used to compute industrial
con�gurations. SP is implemented for instance in the Kiva II code [2] and in IFP-C3D code [9]. Despite their
frequent use for industrial applications, Lagrangian methods suffer from a certain number of intrinsic limitations.
First, they raise the question of the coupling with the Eulerian description of the gas phase. This question is still
open since it involves two ways of description that are fundamentally different even if some recent contributions
have pave the way to at least obtaining grid convergence of solutions [13]. Moreover, in the framework of domain
decomposition for parallel computations it is needed to use complex and costly dynamic partitioning methods, to
ensure a good load balancing between different parallel processes. Let us recall also that some advances have been
obtained in this �eld [46]. Finally, in order to describe a full spray injection in a consistent manner, Lagrangian
methods, when they are used, have to be coupled with an Eulerian model for separate-phase �ows [21]. More
recently, Eulerian approaches have undergone rapid development, mainly due to the increase of massively parallel
computing. There is a natural interest to use Eulerian descriptions of two-phase �ow in the case of separated phases
for which Lagrangian methods are not conceptually designed. This kind of approach has been widely developed
in the last ten years.

There is a number of models belonging to the class of Eulerian approaches in two-phase �ow �uid mechanics.
The necessity to understand well the differences, the hypothesis and application conditions is one of the prelim-

4



Atomization and Sprays, Special Issue 2014 Eulerian Moment Methods for Automotive Sprays

coaxial 
injection

air blast 
injection

source : Juniper et al.

source : ECN database

source : Dumouchel et al.

dense/separate phase region

dense/separate
phase region (1)

disperse phase 
region (2)

GH2

LOx

GH2

fuel

(1)

(2)

Figure 2. Visualization of the injection region in various practical situations. Left (top): instantaneous ombroscopy
visualisation of dense/light oxygen mixture for coaxial injection between gaseous hydrogen (GH2) and liquid
oxygen (LOx) in transcritical conditions -P=70 bar (Juniper et al. [56]). Left (bottom): instantaneous ombroscopy
visualisation of mixture fraction in a Diesel jet (Engine Combustion Network data base, Sandia [95]). Right:
instantaneous ombroscopy visualisation of injection in an experimental research device for jet atomization in low
pressure conditions (Dumouchel et al., [32]).

inary requirements to evaluate the relevance of the new developments described hereinafter. A proposition for
a classi�cation of separated and disperse two-phase �ows can be found in the PhD thesis of Damien Kah [57].
Some new features of these computational methods are described in the work of Le Chenadec [19, 18]. One can
mention approaches where a direct resolution of the interface is envisioned, namely the front tracking [115] and
front capturing [50, 51, 87] approaches. Nevertheless, from a practical point of view, a full direct resolution is still
not achievable to predict the overall behavior of a liquid phase from the onset of injection to the fully developed
spray formation and evaporation under real engines operating conditions. The use of reduced order models, giving
access to

� a precise and stable resolution of the mixture formation statistics at every point of an engine, and

� a coherent description of the full two-phase �ow from the internal/close injector region, including all ther-
modynamically relevant conditions and compressibility effects encountered in practical applications,

is thus a necessity in view of the development of predictive simulation tools.
Phase-average models based on averaged �eld equations are of particular interest to compute two-phase �ows

in complex con�gurations. Fundamental work presenting the derivation of equations associated with this kind of
approach was initially proposed in the context of thermohydraulic two-phase �ow [54] and the mathematical basis
at the beginning of the eighties [29]. Once the �eld equations are established, closure relations are then neces-
sary for exchange terms between phases. The classi�cation proposed in [57] distinguishes between the following
models, the associated hypothesis and the necessary conditions on the mathematical structure and thermodynamic
consistency:
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� Mixture models

� Two-�uid models without interface (compressible and incompressible)

� Two-�uid models with interface (compressible and incompressible)

One challenge for this kind of development is to ensure the stability and thermodynamic consistency of the �nal
system of equations. To deal with the physics of compressible two-phase �ow that are encountered in engines,
there is a number of recent works related to the questions around the Baer & Nunziato approach [3] and numer-
ical approaches to solve this system [104, 88] and more recently [44, 43, 67]. This approach offers a complete
description of separated �ows phenomena.

The so-called seven equation approach with Baer & Nunziato closures has been more particularly detailed
and is used in the IFP-C3D code [9] to deal with dense �ows ([114],[117],[74]). A certain number of modeling
dif�culties arise and have to be overcome to make this kind of approach operational:

� First, the question of the transition between �ow regimes is crucial. Some authors have proposed theo-
retical developments [71],[90] around the notion of interfacial area based on original ideas in combustion
[75],[12] to tackle this issue. A modeled transport equation for interfacial area is used to represent the mix-
ing processes from the internal injector region down to the fully developed spray region [116, 55, 22, 69].
Using these notions, efforts have been made towards the simulation of the entire injection process with
Eulerian-Lagrangian coupling (like in the Eulerian LAgrangian Spray Atomization solver [116, 22, 69]) or
Eulerian-Eulerian simulations using the two-�uid Baer & Nunziato approach [3] with two surface density
transport equations [74]. These aspects, related to �ow regime transitions, will not be considered in the
present paper as they constitute the subject of ongoing developments at the present time and, in particular,
further improvements are being considered to make this approach fully operational for engine combustion
calculations.

� Second, clouds of droplets formed by high pressure injection used in automotive engines are, by nature,
polydisperse and one has to introduce a model for the polydispersion of the fully developed spray region,
which is not straightforward for standard Eulerian approaches and is critical for the prediction of the vapor
phase distribution and for combustion.

This last point is the central point of this paper as it was the thread of several recent works that have addressed
some major dif�culties to make these approaches able to handle polydispersity [82, 83, 60] of evaporating sprays
for IC engines conditions in a robust and accurate way [35, 58], and which cover:

� modeling of exchange terms between phases (drag, evaporation) in a two-way coupled manner,

� mathematical and numerical analysis of the complete system including transport in phase and physical di-
mensions (3D),

� integration in moving mesh algorithms for geometric variations of the combustion chamber (piston, valves
motions) and injector (needle motion), and

� applications in practical situations.

In the context of automotive injection, the modeling of the spray/gas turbulent interactions in engines is also an
important issue, which is the subject of numerous recent studies (see [38, 100, 129, 121]). We would like to draw
the reader's attention to the fact that the developments stated above and their �rst implementations and tests in a
engine solver were conducted in a laminar-�ow context. Developments on the turbulent aspects of the approach
are to be described and validated with full details (see [34]).

The present work introduces the key features of Eulerian moment models with size polydispersion, starting
with the main steps of its derivation to the �rst test cases in realistic direct injection conditions. Section 2 introduces
the two-phase �ow modeling framework adopted for model development whose aim is to achieve a robust method
for the disperse-phase simulations. A statistical description based on a Williams-Boltzmann kinetic equation for the
spray number density function (NDF) is considered. General considerations on Eulerian modeling are presented in
section 3 and various moment-based approaches developed recently are introduced from section 3.2 to section 3.5.

The high-order moment method for size polydispersion, recently developed in view of automotive spray direct
injection, is described in section 3.6 and section 3.7. The required adaptations for engine applications and the �rst
test cases for spray injection systems are described in section 4. In particular, it is shown that such a numerical ap-
proach is as accurate and stable as Lagrangian particle methods for disperse spray conditions and can be operated
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in complex geometries such as those encountered for practical injection devices with large-scale variations in tem-
poral and spatial dimensions. As stated above, the turbulence generation in the �nal high-velocity jet simulations
will directly result in air motion due to two-way coupled spray/gas macroscopic interactions.

2 Kinetic spray modeling

The disperse-phase assumption for the liquid, applicable for dilute sprays with volume fraction� v < 10� 2, allows
the use of the so-called kinetic spray model. This model is based on the Williams-Boltzmann equation [123, 124].
Although this represents a mesoscopic level of description, it is called kinetic by analogy with the mesoscopic
kinetic theory of gases. Indeed, the assumptions made for the spray droplets [39] are similar to the ones made for
the gas molecules when deriving the kinetic model. These assumptions are recalled here. The model describes
the transport of the spray NDF and its evolution due to the physical phenomena such as evaporation, heat transfer
or particle interactions applied to the spray, as external forces. The source terms responsible for the phase-space
evolution of the NDF are analyzed here. Due to the disperse-phase assumption, the liquid in�uence on the gas
phase is obtained through source terms in the gas-phase governing equations. The expressions for these source
terms are provided in the framework of a kinetic spray description.

2.1 Particle �ow regimes

Within the dilute limit assumption made here, the dynamics of a gas-droplet �ow is ruled by two major effects.
First, droplet-droplet collisions may occur in a two-phase �ow, depending on the collision frequency. The �ow can
then be parameterized by the Knudsen numberKn

Kn =
� c

� g
; (1)

with � c is the collision time of droplets and� g is the gas-phase characteristic time. This number represents the
importance of droplet-droplet collisions relative to free transport, and is the equivalent of the Knudsen number
de�ned from the gas kinetic theory [108]. Therefore, the �ow behavior is characterized byKn such as in the gas
kinetic theory. The particle �ow can be considered as a continuous �ow as long asKn � 1. On the contrary, when
Kn > 0:1, the rate of collisions is not signi�cant enough to ensure that the �ow is at equilibrium, i.e the velocity
distribution function is Maxwellian, or at a state close to equilibrium.

Secondly, the drag is the leading phenomenon intervening in disperse phase �ows which is the major actor
allowing the distribution of droplets inside the combustion chamber. There are two main dimensionless numbers
characterizing this behavior: the Stokes numberSt and the droplet Reynolds numberRep.
The Stokes number is expressed as:

St =
� p

� g
; (2)

with � p is the dynamic time scale associated to a droplet of size in surfaceS, represents the response of a droplet to
a change inside a gas �ow. If the Stokes number is small enough (St � 1), the droplets will have nearly the same
velocity as the gas. On the other hand, for large Stokes numbers, droplets barely feel the gas, so that their trajectory
is hardly in�uenced by the gas. This issue will lead to the phenomenon calledparticle trajectory crossingPTC,
which will be further discussed in 2.1.2. For an isolated droplet in a uniform gas, the droplet Reynolds number
determines the net force of the gas on the droplet and expressed as:

Red =
� gS1=2 j u g � u j

p
�� g

; (3)

whereu is the droplet velocity.Red is important to characterize the �ow regime around a droplet. A �nite particle
with a diameter greater than the smallest length scale (Kolmogorov scale) of the continuous �ow can modulate the
turbulence of the �uid in the vicinity of its interface through a wake effect. Otherwise if the particle diameter is
smaller than the Kolmogorov length scale, it is a point particle and the �uid �ow around it will not be in�uenced by
the motion of the particle. Let us also remind that even if a particle has a smaller diameter than the smallest �uid
length scale, its high inertia can lead a Stokes number greater than 1. All these regimes of particles are important
in choosing the right disperse-phase models [4].

7



Atomization and Sprays, Special Issue 2014 Eulerian Moment Methods for Automotive Sprays

2.1.1 Polydispersity

As far as the disperse-phase topology is concerned, various sizes of droplets determine the �ow regime. In fact,
both phases and droplet-droplet interactions are governed by the size. Characteristic time scales of physical phe-
nomena occurring in the disperse-phase are therefore driven by the size. For instance, the Stokes numberSt,
depending on size through dynamic time scale� p, previously given in Eq.(2) is one of the parameters in�uencing
the velocity relaxation between the continuous phase and droplets. Yet one can also de�ne other Stokes numbers
in case where droplet evaporation and heating, determining the mass and heat exchanges between phases, are
governing physics:

Stv =
� v (S)

� g
; St� =

� � (S)
� g

(4)

with � v the evaporation time scale and� � the thermal relaxation time scale, depending on size. The strength of
polydispersity and the ways to quantify it depend on the application, but for internal combustion engine applica-
tions considered here, it has a crucial impact on the equivalence ratio, which conditions the combustions regime
and the pollutant formation.

2.1.2 Particle Trajectory Crossings (PTC)

Particle trajectory crossings (PTC), are linked to the ability of droplets to have signi�cantly different velocities in a
same region of the �ow. As the droplets tend to correlate their velocities at different rates according to their size in
a given �ow, it is natural to expect a major in�uence of size: while all the very small droplets have the gas velocity,
small, medium and large droplets have a velocity depending on their size so that they do cross if their sizes are
signi�cantly different. This is referred to ashetero-PTCi.e. PTC at different sizes [24]. In addition, medium and
large droplets may encounter crossings even for droplets of the same size, which is referred to ashomo-PTC, PTC
at same size [24]: this is due to the fact that medium and large droplets are de�ned to take a large time compared
to that of the gas to correlate their velocities so these correlations weakly or never occur.

2.2 Williams-Boltzmann kinetic equation: framework and derivation

We present brie�y the framework needed for the derivation of the Williams kinetic equation for a spray. For more
details, the reader can see, for example, [123, 124].

2.2.1 Basis assumptions

Statistical modeling relies on ensemble (or statistical) averages. The goal is to reduce the information carried by
the numerous particles to the only relevant one of ensemble behaviors. Each particle, denoted by the subscripti , is
described by few degrees of freedom (DoF) that evolve in time, e.g. a minima its positionx i (t) and velocityu i (t).
So the particle system has6N DoFs in total and its state is exactly described by a point in a6N -dimensional
space called the� phase space with� = R6N . For classic particles encountering an external forceD r

ext per unit
mass and a particle-particle interaction forceD ri;j per unit mass that differs on the relative distancej x i - x j j, the
equations of motion at the microscopic level read:

dt x i (t) = u i (t); (5a)

dt u i (t) = D r
ext (t) +

NX

( j =1
j 6= i )

D ri;j (t): (5b)

We want to avoid describing all the details of the system and, instead, to follow some of the quantities that emerge
at the macroscopic scale. These quantities de�ne a state at the macroscopic level and they are not as numerous
as the micro-DoFs. So a macroscopic state can be reached thanks to many different underlying microscopic
con�gurations [96]. We now focus only on these macroscopic variables: we compute them as ensemble averages,
i.e. an average over many copies of the initial system, possibly evolving differently at the microscopic scale, but
similarly at the macroscopic scale: this idea, due to Gibbs, allows to smooth out the undesired �uctuations from
the temporal behavior of the macroscopic quantities. The number of ensembles to consider is large enough for the
microscopic state points to be dense in� . We thus adopt a statistical point of view, introducing a multiple-particle
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joint distribution functionf N (t; x 1; x2; � � � ; xN ; u1; u2; � � � ; uN ). The evolution of anN -particle system is then
given by the Liouville equation for the NDF in6N phase space:

@t f N +
NX

i

u i � @x f N +
NX

i =1

0

B
@D r

ext
i +

NX

( j =1
j 6= i )

D ri;j

1

C
A � @u i f

N = 0 (6)

which originates from the conservation of the number of points in� and renders all the microscopic evolution
equations of System (5a). In practice the dimension off N is huge (it might be in�nite) and one has to come
up with a reduced (or contracted) description. Varying the number of particles retained in the state vector� , a
reduced description is given by the classical BBGKY hierarchy (the initials are those of the authors who derived it
independently: Bogoliubov, Born, Green, Kirkwood and Yvon) [17, 72]. It consists of transforming the Liouville
equation into a chain of equations in which the �rst equation connects the evolution of one-particle PDFf 1 to the
two-particle PDFf 2 , the second equation connectsf 2 to f 3 and so on. The system is an exact approach to the
Liouville equation. It is therefore redundant but it is practical to build approximations by truncation of the chain
when some particle correlations are neglected. The most celebrated example of the utility of the BBGKY hierarchy
consists in closing the �rst equation of the hierarchy by assuming:

f 2 (t; x 1; x 2; u 1; u 2) = f 1 (t; x 1; u 1) f 1 (t; x 2; u 2) (7)

which means that the particles are totally uncorrelated. The BBGKY hierarchy is then entirely de�ned by the
knowledge of a one-particle Probability Density Function (PDF)f 1 evolving in a 6-dimensional space called� -
phase space according to the equation:

@t f 1 + u 1 � @x f 1 + D r
ext
1 � @u 1 f 1 = �

Z
D r1;2 � @u 1 f 1 (t; x 1; u 1) f 1 (t; x 2; u 2) du 2dx 2 (8)

The number density function (NDF)f , obtained by summing the one-particle PDF in order to describeN indis-

cernible particles [120]: f =
NX

i

f i . Its phase space variables arex et u . Similarly to Eq.(8) for the evolution of

f 1, the Williams-Boltzmann equation is classically used to describe the transport of NDF function.

2.2.2 Williams-Boltzmann equation

The droplets are assumed to be spherical, and are characterized by their position,x , their size� , their velocityu
and their temperatureT. The spray NDF depends on these variables and on time, the quantityf � (t; x ; �; u ; T)dt
dx d� du dT being the probable number of droplets with, at timet, a position in[x ; x + d x ], a size in[�; � + d � ],
a velocity in[u ; u + d u ] and a temperature in[T; T + d T]. The particle size can be described either by the volume
V , surfaceS or radiusr , with the following relation:

f SdS = f r dr = f V dV: (9)

It has been shown [62] that using the droplet surface as the variable for particle size is a good choice in the
development of the multi-�uid model from the kinetic description. As shown in the next sections, it also proves to
be a good choice for the development of the high order size moment method for the description of polydispersity.
We therefore use surfaceS as the size variable in the following development. The NDFf , without any superscript,
will then be associated with the droplet surface.

The NDF of the spray follows a transport equation, the Williams-Boltzmann equation (WBE), �rst introduced
in [123] and given as:

@t f + r x � (u f ) + r u � (F f ) � @S (Rf ) + @T (Ef ) = � + Q (10)

where

• @t f + r x � (u f ) represents the free transport of the spray,

• F = d t (u ) is the acceleration applied on droplets per unit mass,

• R = � dt (S) is the rate of change of the sizeS of droplets, or evaporation term,
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• E = d t (T) is the rate of change of droplet temperature due to heat transfer,

• � is the rate of change of distribution functionf due to collisions,

• Q is the rate of change off through particle formation by secondary break-up processes.

One can note the level of description of the disperse phase kinetic model. The in�uence of the gas on the spray is
modeled through the termsF , R andE. These terms depend on the gas temperature, velocity and composition at
the position of the droplet, and therefore are dependent on space and time.

The relationship presented in Eq. (10) is the general formulation of the Williams-Boltzmann equation that is
typically presented in an introduction to spray modeling. Nevertheless, we will focus on the following terms of
Eq. (10): free transport, external forces and the evaporation term. Isolating these effects will enable us to ef�-
ciently design numerical schemes for their resolution. Therefore, a simpli�ed version of the Williams-Boltzmann
equation to the basic kinetic equation satis�ed byf (t; x ; S;u ), will be used throughout this work:

@t f + r x � (u f ) + r x � (F f ) � @S (Rf ) = 0 (11)

It is important to remember that this simpli�ed framework is not due to a limitation of the proposed models and
it is a critical step in the design of ef�cient Eulerian methods for spray resolution. Contrary to initial impressions
of over simplicity that one may harbor, these terms are the most challenging ones to solve when using high order
moment methods. Indeed, recent publications point out intrinsic dif�culties for the description of polydispersity
through evaporation [41], and for the description of particle trajectory crossing (PTC) [40]. Models for collision
and coalescence have been designed [64],[26] and prove to be very satisfactory even when combined with high-
order moment methods for size [41] or velocity [45].

The next section discusses the possible choices for the resolution method for the spray model. A seemingly
natural choice is the Lagrangian method where one tracks particles in the �ow, considered as representing physi-
cal droplets. Other Lagrangian methods consist in tracking statistical particles in connection with Eq. (11). The
widely used Lagrangian approach has proven its great ef�ciency to simulate complete spray dynamics without
introducing any numerical diffusion [31, 93, 2, 98, 89, 103] except when coupling back to the gas phase is in-
troduced. However, given the encountered limitations of Lagrangian methods in terms of physics and computing
discussed below, an Eulerian spray description represents an interesting complementary tool, given its easier cou-
pling with the gas phase, and its easier optimization through parallel computing, making it an interesting choice
for high-performance computing (HPC) [10, 61].
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3 Eulerian moment methods for sprays

The alternative to Lagrangian particle tracking is the resolution of Eulerian global quantities for the spray, such
as number or mass density and momentum. Eulerian methods can be seen as moment methods derived from the
kinetic equation Eq. (11). We propose to present here the main derivation strategies and resulting methods in the
framework of a spray. We highlight in this presentation the key issues of Eulerian spray modeling in a combustion
context related to the description of the velocity and size distributions. Indeed these two issues condition the ability
of Eulerian methods to describe polydispersity and out-of-equilibrium velocity distributions, i.e., droplet trajectory
crossing.

We present the main derivation strategies leading to Eulerian moment approaches, along with the associated
assumptions. We distinguish between methods explicitly resolving the size distribution based on size-conditioned
velocity equilibrium distribution functions and quadrature methods. Among the �rst class of methods, two families
of models are isolated, relative to their treatment of the size variable. The �rst performs a discretization of the
size phase space with �nite-volume procedures. On the contrary, the second family relies on high order moment
methods with continuous size reconstruction.

The developments and the spray computations presented in this section are done in a laminar �ow context.
Modeling spray-gas turbulent two-way coupled interactions using moment methods is a complex issue, which is
currently being developed and tested in engine injection conditions and it is the subject of a separate paper [34]
in the framework of RANS modeling. What is proposed in the following sections is to highlight the key points of
each Eulerian moment method and its derivation, without introducing additional complexity related to turbulence
modeling.

3.1 Derivation strategies in a DNS context : Quadrature vs hydrodynamic velocity equi-
librium conditioned in size

The full resolution with �nite volume of the kinetic equation, Eq. (11) (also referred to by O'Rourke as the full
spray equation method [93]) is dif�cult given its cost related to the high number of phase space dimensions. Indeed
in a 3D case, the phase space is of dimension seven (3 for space,3 for velocity,1 for size). Nevertheless, in many
cases the knowledge of the full kinetic description of the spray is not needed, and it is suf�cient to resolve the
evolution of global quantities such as the NDF moments. For a given function (y), thekth order momentmk is
de�ned by

mk =
Z

y
yk  (y) dy: (12)

Therefore, for the NDF we introduce the momentM of order k in size, (l; m; n ) for each component of the
velocity, respectively :

M k;l;m;n =
Z

S

Z

u
f (t; x ; S;u ) Sk ul

x um
y un

z dS du (13)

The evolution of the spray moments can be derived from the (WBE) equation Eq. (11), in the following way:
Z

S

Z

u
Eq: (11)Sk ul

x um
y un

z dSdu; (14)

One has to notice that the moment equation derivation leads to a loss of information and that, without any peculiar
assumption, the system of equations for moments is not closed, even if the kinetic model was. Indeed, some
quantities can not be expressed in function of the set of moments resolved; for example with regard to velocity
moments, the equation for the pth order moment (withp = i + j + k) introduces the moments of orderp + 1 .
Therefore taking one �rst order momentM 0;0;1;0;0 introduces the second order momentsM 0;0;2;0;0, M 0;0;1;1;0,
M 0;0;1;0;1 (see [118] and references therein). Assumptions have then to be done on the form of the NDF to close
the moment evolution system. Therefore, there are two major strategies in the literature.

• For some of the spray Eulerian methods, the derivation of the moment system, along with its associated
closures can be divided into two steps. First a form for the NDF in velocity and in temperature is presumed
for each �xed size as follows:

f (t; x ; u ; S) = n (t; x ; S) � u (t; x ; u ; S) (15)
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where� u is the presumed PDF in velocity, which is most of the time a hydrodynamic equilibrium from
kinetic theory [118]. The variablen is the number density of the spray. The velocity integration of (WBE)
under the NDF Eq.(15) leads to the derivation of an intermediate closed system of conservation laws, the
semi-kinetic system. The second step is devoted to the size-phase space treatment, there exist several meth-
ods introducing different types of system of conservation laws and closures.

• However, we can also �nd methods using quadrature-based approximations for the NDF introduced orig-
inally in [85, 126, 76]. One can write conservation equations for moments of WBE and use a quadrature
formula to compute the unknown moments and source/forces integrals as a function of low order moments
of the NDF. The dif�culty relies in the quadrature, that is evaluating the abscissas and weights of the quadra-
ture from the knowledge of the moments, for which there as very ef�cient algorithms where the distribution
is monovariate, but becomes more involved when multi-variate distributions are investigated� . The Direct
Quadrature Moment of Methods (DQMOM) quadrature method has been originally developed for cases
where a multi-variate NDF function is required for WBE [76]. In order to evaluate its effectiveness in the
context of evaporating polydisperse spray modeling, it has been also compared to the multi-�uid method
in [41]. In this case, instead of transporting moments of the distribution, one transports all abscissas and
weights of quadratures. A system of conservation laws is obtained, where source terms are derived from the
WBE equation on a set of moments one wants to exactly resolve. Yet, in [41], it has been demonstrated that
the DQMOM approach shows inaccuracies when it comes to predict droplet evaporations since as QMOM, it
is hard for such an approach to recover the point-wise value at zero size from the knowledge of the moments
related to the number of disappearing droplets. The more recently introduced EQMOM based on the ideas
of more regular kernels than Dirac delta functions, but also relying on quadrature methods, is a promising
method but there is still some work to be done in order to cover the entire moment space up to the bound-
ary [128]. Moreover, DQMOM has been proven to be inaccurate for PTC events for which the CQMOM
approach is rather preferred [127] even is it is weakly hyperbolic and can lead to arti�cial singularity for-
mations [16]; once again Multi-Gaussian distribution reconstruction, on which EQMOM method has been
built, can help solving these issues [15, 66, 14].

Even if the �eld of quadrature-based moment methods is quite active, since we will not be using this approach
in order to treat properly the evaporation process, which has to be based on smooth reconstruction of the number
density function, we will only concentrate on the exposition of the �rst class of methods. Before treating the
polydispersion, we will propose a synthesis of polykinetic treatment of monodisperse sprays of droplets or particles
based on kinetic theory approaches. Then, we will focus on to the Eulerian polydisperse models where the link
with Eulerian polykinetic models will be also investigated.

3.2 Eulerian polykinetic modeling through kinetic-Based Moment Methods (KBMM)

The common aspect of Eulerian polykinetic models is the fundamental modeling of the velocity distribution func-
tion 	 u in Eq.(15). The basic mono-kinetic assumption for the velocity distribution that is a unique spray velocity

� The original QMOM approach consists in transporting and conserving a set of 2Np size momentsM =
�
M 0 ; : : : ; M 2N p � 1

�
with

M k (t; x ) =
Z

R+
� k f (t; x ; � ) d � . The NDF function is presumed by the following expression:f (t; x ; � ) =

N pX

i =1

wi (t; x ) � (� � � i (t; x ))

with Np is the number of peaks,wi the weights, and� i the abscissas. Thanks to the moment-inversion algorithm provided in [84], weights and

abscissas are found from the relationM k =
N pX

i =1

wi � k
i , k 2 0; 1; : : : ; 2Np � 1. To illustrate the QMOM method, let us work with a rather

simpli�ed WBE for the aerosols transported through the gas velocityu g

@t f + r x � (u g f ) = � ( t; x ; � ) f (t; x ; � ) :

After the size integration, the evolution of thekth order size moment is given by:

@t M k + r x � (M k u g ) =
Z

�
� k � ( t; x ; � ) f (t; x ; � ) d �

The evolution of the NDF is therefore described by2Np equations. Yet, The form of the function� can be complex and yields unclosed
moments. The strategy adopted in QMOM method is to �rst reconstruct quadrature points and then compute unclosed integral terms as well

as non-conserved moments
Z

�
� k � ( t; x ; � ) f (t; x ; � ) d � =

N pX

i

� k
i wi (t; x ) � ( t; x ; � i (t; x )) , as well as non-conserved momentsM � =

N pX

i =0

wi � �
i .
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for all droplets at a given time and position, leading a dirac� -function 	 u = � u , has been the starting point for
some Eulerian polydisperse models, discussed in section (3.3). Yet the latter approximation is not true for two-
phase �ows with inertial droplets in a gaseous carrier phase. In such �ows the motion of droplets strongly depends
on their inertia characterized by their Stokes number, based on the smallest time scale of the carrier �ow which is,
in case of a turbulent �ow, the Kolmogorov scale or can be related to a strain rate as demonstrated by S. de Chaise-
martin in his PhD [20]. For low Stokes numbers, the spray phase velocity is strongly correlated to the gas phase
velocity and mono-kinetic velocity distribution is well adapted. Therefore, one can work with only velocity mo-
ments of zero and �rst order. Yet regimes with higher Stokes numbersSt, droplets velocity are not well correlated
locally with the gas velocity. This leads to an uncorrelated droplet motion either called the Random Uncorrelated
Motion (RUM) [38] or the granular temperature [42]. The latter aspect drives the homo-PTC phenomenon (see part
2.1.2). It is important that the velocity distribution	 u locally reproduces polykinetic distribution, that is locally
various velocities for same sized droplets at timet and locationx .

The complete hierarchy of Eulerian methods, aiming at capturing homo-PTC is discussed in detail in [66]. We
can divide up the Eulerian polykinetic approaches of the literature into two categories:

• Algebraic-Closure-Based Moment Methods (ACBMM): A limited set of moments, usually up to second or-
der moments, are chosen and transported. Since their transport involves higher order moments, these missing
moments are computed from the knowledge of the lower order moments throughequilibrium assumptions
inspired from RANS turbulence modeling using explicit algebraic closures [107]. One example of this class
of methods introduced in [79, 80] considers and transports a unique, scalar second order moment. Other
second or third order moments are then computed from the knowledge of the transported moments to get the
most accurate closure at a reduced cost. This type of approach has already reached the real application level
[122, 78, 100]. However it has to face local realizability problems [105], i.e. the occurrence of moments not
linked to a non-negative NDF, and the design of adapted numerics is not straightforward and has never been
conducted since the mathematical structure of the underlying system of Eulerian equations is not clearly
identi�ed.

• Kinetic-Based Moment Methods (KBMM): The main idea of this type of approach is to consider a set of
moments for which we can associate in a one-to-one correspondence a unique kinetic velocity distribution
with a suf�cient number of parameters to controlthe given set of moments. This presumed NDF must be non
negative and allows to evaluate high order moments needed in the system of moments for transport. Closures
have been proposed to control moments up to second order [81, 118], up to the third order (CQMOM [127]),
and up to the fourth order (Multi-Gaussian [15, 66, 14]). Among the KBMM two categories emerge; the
�rst is based on hydrodynamic equilibrium usually related to a given notional collision operator and the
second is based on quadrature methods. The �rst category allows a well-de�ned mathematical structure
and entropy inequality, whereas most of the time the second leads to weakly hyperbolic systems [16]. The
main advantage with KBMM is the existence of dedicated numerical methods, which will guarantee the
realizability and the stable behavior of the numerical schemes, either classical hyperbolic solvers [70, 113]
or kinetic schemes [11, 20, 127].

3.3 Kinetic based Eulerian simulation of polydisperse droplets

We now focus on kinetic based Eulerian models able to describe both the polydispersity and the droplets evapo-
ration. The idea is to brie�y discuss about each of the several existing methods along their potential towards ICE
applications.

The derivation of some of the Eulerian polydisperse models are done in two steps. The �rst step consists of
obtaining the semi-kinetic equation system through the integration in velocity and temperature of WBE and the
second step is the derivation of Eulerian equations through the integration in size of the semi-kinetic system. Yet
for the sake of simplicity, these methods are originally derived, assuming a monokinetic assumption for the NDF
function but higher velocity moments could be considered. This implies that there are locally unique velocity and
temperature for all droplets. It is therefore useful to �rst introduce the semi-kinetic modeling concept based on this
strong assumption before discussing about each of relevant polydisperse models.

We highlight here the main assumptions on the NDF and give its form under an equilibrium assumption with
no dispersion for the velocity and the temperature distribution:

• [H1] For a given droplet size, at a given point(t; x ), there is only one characteristic averaged velocity
u p (t; x ; S).
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• [H2] The dispersion in the distribution function around the mean velocity is zero in each direction, whatever
the point(t; x ; S).

• [H3] The dispersion in the distribution function around the mean temperature is zero in each direction,
whatever the point(t; x ; S).

It is equivalent to presume the following NDF conditioned by droplet size:

n (t; x ; S) = f (t; x ; S) � (u � u p (t; x ; S)) : (16)

From this approximation, we can derive a system of moment equations for the spray taking the moments in velocity
of order 0 and 1 of WBE. This gives rise to the semi-kinetic system of equations:

@t n + r x � (nu p) = @S (Rpn) ; (17a)

@t (nu p) + r x � (nu p 
 u p) = @S (Rpu pn) + F p n; (17b)

(17c)

with

Rp = R (t; x ; u p; S) ; F p = F (t; x ; u p; S) : (18)

Let us recall that the semi-kinetic system, derived from the monokinetic assumption on the NDF, is weakly hy-
perbolic since no pressure like dispersion term arises in Eq.(17b). Therefore, Eulerian methods which will be
derived through system (17) will follow this pressure-less formalism. This remark is particularly important since
the pressure-less system is known to generate delta-shocks and do not capture the homo-PTC [20]. To overcome
this dif�culties, these polydisperse methods can be coupled to Eulerian polykinetic approaches [24] which are
already presented in part 3.2.

3.4 Eulerian polydisperse approach with size sampling

Let us start with the size sampling approach. The size sampling approach [63, 7] also referred to as Multi-Class
method, or Lagrangian-in-size method [92], considers the NDF as sampled regarding the size variable, yielding
I classes of particles of same size, illustrated in Figure 3(a). The sampling approach is based on the following
approximate NDF:

n (t; x ; S) =
IX

i

N i (t; x ) � (u � u i (t; x )) � (S � Si (t; x )) (19)

whereN i , Si andu i are respectively the droplet number density, size and velocity at the location(t; x ). With this
form, droplets with the same size are gathered into classes wherei is the index of a class: the classes perform a
sampling of the NDF over the whole phase space. The mass and momentum conservation equations for each class

(a) (b)

Figure 3. Size distribution with size sampling approach (a). Size distribution with MF method (b)

i of the spray are obtained through the integration of WBE in sizeS abd the velocityu . The mass and momentum
source terms are evaluated as they depend on the sampled droplet variables.

The Multi-Class approach can yield a satisfactory representation of the disperse phase size distribution, pre-
vented that enough classes are considered and that they correspond to relevant points. Choosing a satisfactory
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sampling of a given distribution is a classical problem but here, it is coupled to the question of predicting the
correct evolution of the spray, given such a distribution, which is a tough non-linear and implicit problem. So size
samples are often chosen empirically. Moreover, as the approach is discretized regarding size with Dirac functions,
the non-local transport cannot be accounted for properly: the size evolution due to sources (coalescence, break-up)
is poorly rendered due to the fact that the samples have no particular reasons to match the new sizes. Conversely
this technique is avoided when it comes to modeling discrete size-changing phenomena. Looking for the accurate
evaporation, this method is not adapted for our problem.

3.5 Eulerian Multi-�uid model

The Eulerian Multi-Fluid model (MF), also referred to as 'sectional' method, was developed in [63] to account for
the droplet size in a continuous and affordable manner. It is inspired from the seminal work in [112], furthered in
[106, 47]. But the origin and assumptions of the Multi-Fluid model have been precisely presented in [63]. Based
on the mono-kinetic assumption, the original MF method is at �rst order in size for the evaporation [62]. Yet it has
been extended to a second order in size for the evaporation through the work of [62, 25]. Moreover, recent advances
in [26] took into account size-velocity correlations for a rather precise description of hetero-PTC through two size
moments. In this part, we will �rst focus on the derivation of the original MF, then providing some information on
recent achievements and �nally give a brief conclusion about the method.

3.5.1 Original MF assumptions and the model derivation

The original MF method is derived, adopting a mono-kinetic velocity and temperature distribution. Therefore
this accounts of working with the same system given through Eq.(17). Yet, Eq.(17) has still a size phase-spaceS
dependence.

The Multi-Fluid model relies indeed on the choice of a discretization for the droplet size phase space:

0 = S0 < S 1 < � � � < S N sec = 1 (20)

whereNsec is the number of sections. The system of conservation laws is then averaged over each �xed size
interval [Sk � 1; Sk [, called section. The set of droplets in one section can be seen as a “�uid” for which con-
servation equation are written, the sections exchanging mass, momentum and energy. The principle of sectional
discretization is shown in Figure 3(b) and can be seen as a �nite volume method on the size dimension, continuous
size-variation source terms (e.g. evaporation) resulting in �uxes at the edges of the size cells. In the following, let
us recall the strategy to obtain a closed conservation equation system for each section through the integration in
size of the semi-kinetic system (17).

The velocity and the temperature are supposed to be independent of size variable within each section. There-
fore the notationu (t; x ; S) = u (k ) (t; x ) is chosen to designate the constant velocity distribution in sectionk.
The validity of this assumptions is linked to the strength of polydispersity in each section, which is quanti�ed in a
section by comparing the smallest to the biggest Stokes numbers. If the dynamic Stokes number spectrum is too
wide, the discretization must then be re�ned [20, 26, 27] or or size-velocity coupled high order moments should
be used within each section to improve the accuracy [26, 122].

For the polydispersity treatment, in each section, the form ofn as a function ofS is presumed which allows to
reduce the size distribution information in each section at(t; x ) to a set of moments ofS.

In the original MF method [63], the One-size Moment (OSM) method which consists of decoupling the con-
tribution in sizeS from space-time(t; x ) dependence by the following way:

n (t; x ; S) = � (k ) (S) m(k )
3=2 (t; x ) (21)

where� (k ) is a function of sizeS andm(k )
3=2 is the size moment corresponding to the spray mass density within the

k th section which is expressed as:

m(k )
3=2 (t; x ) =

Z Sk

Sk � 1

� p

6
p

�
S3=2n (t; x ; S) dS = 1 (22)

which gives us, for the form� (k ) in one section:
Z Sk

Sk � 1
� (k ) (S)

� p

6
p

�
S3=2dS = 1 (23)
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As mentioned in [63], � (k ) (S) is taken as constant in size distribution .
Let us now derive macroscopic MF equations. For the sake of simplicity, the spray temperature is assumed to

be constant and uniform. From where, taking the integration in
� p

6
p

�
S3=2 of the semi-kinetic system (17) within a

section[Sk+1 ; Sk [ leads to the following system of conservation equations:

@t m
(k )
3=2 + r x �

�
m(k )

3=2u (k )
p

�
= �

�
E (k )

1 + E (k )
2

�
m(k )

3=2 + E (k+1)
1 m(k+1)

3=2 ; (24a)

@t

�
m(k )

3=2u (k )
p

�
+ r x �

�
m(k )

3=2u (k )
p 
 u (k )

p

�
= �

�
E (k )

1 + E (k )
2

�
m(k )

3=2u (k )
p

+ E (k+1)
1 m(k+1)

3=2 u (k+1)
p + m(k )

3=2F (k )
p ; (24b)

where we de�ne, in thekth section, the averaged velocity

u (k )
p =

1

m(k )
3=2

Z Sk

Sk � 1

� p

6
p

�
S3=2u p (t; x ; S) n (t; x ; S) dS; (25)

and the averaged drag term

F (k )
p =

1

m(k )
3=2

Z Sk

Sk � 1

� p

6
p

�
S3=2F p (t; x ; S) n (t; x ; S) dS: (26)

Expressions for the evaporation termsE (k )
1 andE (k )

2 are given as

E (k )
1 =

5S3=2
(k � 1)

2
h
S5=2

(k ) � S5=2
(k � 1)

i Rp
�
S(k � 1)

�
; (27)

and

E (k )
2 =

5

2
h
S5=2

(k ) � S5=2
(k � 1)

i
Z S( k )

S( k � 1)

3
2

S1=2Rp (S) dS; (28)

3.5.2 MF with two size moments per section

Yet the OSM yields a lack of accuracy in terms of the size distribution and requires a great number of sections to
counterbalance its drawback. An accurate method is therefore needed to capture polydispersity at the compromise
of computational cost, but also ease of implementation and �exibility. Instead of increasing the number of sections,
increasing the number of moments per section is a promising option. The works done in [62, 26] rely on solving
two size moments in each section and the method is referred to as Two Size Moment (TSM) method. It consists in
transporting moments corresponding to both the numberm(k )

0 and the massm(k )
3=2 instead of one unique moment

per section. These moments are expressed as:
0

B
B
@

m(k )
0

m(k )
3=2

1

C
C
A =

Z Sk

Sk � 1

0

B
B
@

1

� p

6
p

�
S3=2

1

C
C
A n (t; x ; S) dS (29)

The only realizability condition for a couple of size moments
�

m(k )
0 ; m(k )

3=2

�
in a section is to be positive and to

correspond to an average diameter that is in the size interval:
�

m(k )
0 > 0 andm(k )

3=2 > 0
�

or
�

m(k )
0 = m(k )

3=2 = 0
�

(30a)

� p
�
Sk � 1

� 3=2

6
p

�
�

m(k )
3=2

m(k )
0

�
� p

�
Sk

� 3=2

6
p

�

Respecting this realizability condition, there are several strategies in presuming an appropriaten. An exponen-
tial reconstruction called the exponential TSM (Exp-TSM) MF method, suggested in [30], was a �rst method,
respecting the realizability condition. It has been proven to be well suited for evaporation, which requires mass
�ux information at the section boundary. The af�ne TSM (Aff-TSM) MF method is also based on a two-parameter
approximation of the size distribution, through a positive af�ne function reconstruction, in each section. An early
version was suggested in [62] and its more ef�cient extension has been recently proposed in [65].
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3.5.3 PTC with MF method

As discussed before, droplets of different sizes can have different velocities due to the correlations between their
sizes and velocities which yield to the hetero-PTC. Moreover, inertial droplets with the same size can have still
different velocities, leading to the homo-PTC. Yet TSM method which captures the polydispersity resolution at a
second order accuracy under a lower number of sections than OSM method, is not well adapted for the modeling
of PTC. This is due to the fact that all droplets within a section share the same velocity and temperature. In [26],
this lack of PTC accuracy has been addressed and MF method has been extended to capture the PTC.

• Hetero-PTC:Inspired from the work of Vié et al. [122] originally developed for high order moment meth-
ods (further detailed in section 3.7.6), the approach called Correlated Size-Velocity Two Size Moment
(CSVTSM) method is designed to account ef�ciently for size-conditioned dynamics [26]. CSVTSM method,
expected to be second order in size and velocity has been proven to suit well for coalescing cases. Yet addi-
tional to the two size moments transported in the original TSM MF method, two in 1D, four in 2D and six
in 3D velocity moments per section are transported, having a signi�cant impact on the CPU time.

• Homo-PTC:Inspired from the Kinetic Based Moment Methods (KBMM) [119, 66], MF extended and ap-
plied to moderate-inertia particle-laden �ows in order to capture small scale PTC [118]. The velocity distri-
bution in the NDF function is no longer taken as a Dirac function but based on an anisotropic Gaussian (AG)
distribution given. MF method under AG distribution is shown to be well-suited to account for homo-PTC
[28, 26]. The method is promising for moderately dense polydisperse two-phase �ows, to treat the portion
of coalescing droplets that has a signi�cant enough inertia.

3.5.4 Cost and precision of the method

The main drawback of the multi-�uid model is the cost associated to the resolution of theNs systems of conser-
vation laws needed to obtain the evolution of the droplet mass in the sections. Indeed it has been shown [20] that
the multi-�uid model is a �rst-order method in size, with potential extension to second order [62],[26, 24], and
thus a high number of sections, with a minimum of ten sections, is needed to obtain a precise description of the
evaporation process. This raises a twofold problem, in terms of theory and of practical computation. First, in terms
of applied mathematics, one may want to overcome this low-order limitation and thus design a high-order method
in size. Moreover, as shown in Fig. (4), the results are very different whether one or ten sections are considered.
These results show that a minimum number of sections is required to get an acceptable accuracy. Although this
number varies according to the physical case studied, ten sections can be considered the minimum for acceptable
description of polydispersity . But then the computational cost is multiplied by ten, and is too prohibitive in an
industrial context.

We provide an illustration in a con�guration emphasizing this shortcoming. The Taylor-Green con�guration
for the gas phase is used, with a motionless droplet cloud, where the maximum droplet diameter isd0 = 15 � m.
This value for the maximum droplet diameter is chosen in order for the Stokes number of the largest dropletsSt =
0:03 to be lower than the critical Stokes numberStc = 1=8� . Results are provided for different discretizations of
the size phase space: 10 and 40 sections. The sprays are evaporating, with an evaporation coef�cientRS = 0 :27.
Indeed, Fig. (5)(a) exhibits the evolution of the mean particle surface of the total distribution through evaporation,
in the analytical case, and for the multi-�uid model with 10 and 40 sections. Although the multi-�uid model with
40 sections still overestimates the mean particle surface, it is closer to the analytical solution than with 10 sections,
despite an overall similarity of these two solutions. The explanation for this surprising similarity is given in Fig. (6)
displaying the resulting mass of particles such asS( j ) < 0:5 (the �rst 5 sections in the 10 section case, and the
�rst 20 sections in the 40 section case) �rst, andS( j ) > 0:5 (the remaining sections). These results are shown for
t = 2 , when, given the value of the evaporation coef�cient, there must be almost no particle such asS( j ) > 0:5.
If this is the case for the 40 section model, there is still a considerable mass of these droplets in the 10 section case.
This resulting mass is due to diffusion in size phase space. The second conclusion to be drawn from Fig. (6) is that
the dynamics of particles such asS( j ) < 0:5 have the expected behavior, i.e., they are dragged more by the gas in
the 40 section than in the 10 section case. These observations illustrate the need for a method able to reach a good
accuracy in description of polydispersity with a reduced number of sections.

3.5.5 Conclusion on MF method

So far in this part, one has discussed the capability of the MF model to capture the physics of polydisperse evapo-
rating sprays. However, even though this approach has been extended to be more accurate by Laurent et al. [65]
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and [26] for evaporating sprays, the necessity to discretize the size phase space can be a stumbling block. In that
context, the Eulerian Multi-Size Moment (EMSM) method developed in [57, 83, 60] provides to increase the poly-
dispersity accuracy within each section while diminishing the number of sections. Yet it has been proven in [60],
a very good accuracy under a shorter CPU time then MF method is obtained even with the use of only one section.
More details on EMSM method will be given in section 3.7.

Figure 4. Comparison of the gas-phase fuel mass fraction at timest = 15 (left) and t = 20 (right). (Top)
Multi-�uid model with one section. (Bottom) Multi-�uid model with ten sections.

3.6 High order moment methods based on the Maximum entropy NDF reconstruction

A promising alternative to quadrature-based moment methods is to reconstruct, among the in�nity of solutions in
the moment space, the unique NDF function, which maximizes the Shannon Entropy (ME) through its low order
moments [86, 111], see Figure 5(b). Yet there are also other NDF reconstruction choices, such as the ones used in
the description of aerosol Extended QMOM (EQMOM): a sum of beta PDF or gamma PDF, with the possibility
to degenerate on quadratures, but sometimes loosing the highest moment in the reconstruction [128], but the full
extent of the moment space is harder to reach with such methods.

ME reconstruction technique and its associated numerical strategy for the accurate evaluation of evaporation
dynamics has been proved to be very promising for applications in relations with polydisperse sprays [83]. There-
fore, inspired from the basic assumptions of MF method [63], the Eulerian Multi Size Moment (EMSM) method
has been developed in [57, 83, 60]. The ability of spray simulations under the unstructured mesh motion through
EMSM has been successfully assessed in [59]. It has been shown in [60] that EMSM can reach comparable levels
of accuracy, with a reasonable space discretization, with reference to a Lagrangian simulation, while leading to a
much lower level of computational cost compared to the standard MF approach. Let us also mention that a more
recent work called Coupled Size-Velocity Moment (CSVM) method has been developed, in [119], as an extension
model of the EMSM, taking into account size-velocity correlations in the spray. In [119], a tabulation technique
has been also developed to decrease signi�cantly the CPU time associated to size moment reconstruction.

3.7 Eulerian Multi-Size Moment (EMSM) method

It has been previously shown that, although the MF method offers an accurate resolution for the evaporating
polydisperse spray, the necessity to discretize the size phase space, making use of several sections, requires to
transport a system of governing equations for each section, thus increasing the CPU time. Let us recall that the
computational time can be decreased through the use of a two-size moment MF method, while maintaining a good
accuracy on the size distribution. Yet still more than one section is required. In [83], a four-size moment MF
method has been developed, leading a very good accuracy both in case of only two and even one size section.
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(a) (b)

Figure 5. (a) Evolution of the mean particle size through evaporation with ad2 law, and comparison with the
analytical solution. Black curve: analytical solution. Dashed blue curve: high-order moment method. Blue curve
with circles: multi-�uid model with 10 sections. Red curve with squares: multi-�uid model with 40 sections.(b)
Reconstruction of the size distribution through entropy maximisation (red dashed line), the real size distribution
(black solid line).

Since one section is enough to capture accurately the polydisperse evaporating spray, this one-section technique
has been adopted in developing the high order moment method, called Eulerian Multi-Size Moment (EMSM)
method as already presented to be accurate in part 3.6, while providing lower CPU time. In the reminder of this
section, let us go into details of the EMSM method with four-size momentsy. Firstly, its derivation strategy will
be given. Then the bottleneck points in working with several size moments along with the associated realizability
condition will be point out. Afterwards, we will discuss about dedicated numerical schemes developed in the
literature and recent fruitful realizations. Then, one will brie�y discuss about the recent work initiated from the
basis of EMSM to capture the hetero-PTC. Finally, its implementation in the industrial code IFP-C3D as well as
required developments towards ICE applications will be discussed.

3.7.1 Derivation of EMSM

As was the case for MF method, the EMSM method is also based on a mono-kinetic assumption for both the
temperature and the velocity distribution. Yet deriving a size moment system at macroscopic (Eulerian) level is
rather different in EMSM compared to MF since the size distribution functionn is kept smooth and following
assumptions are done:

u p (t; x ; S) = u p (t; x ) (31)

For the sake of simplicity, let us now takeR in WBE as a constant, so thatR = Rp. One �rst takes the moments of
Eq.(17a) in size of order 0 up to3. Then one takes the size moment of order one of Eq.(17b). Then the governing
equations are given as:

@t m0 + r x (m0u p) = � Rpn (S = 0) ; (32a)

@t m1 + r x (m1u p) = � m0Rp; (32b)

@t m2 + r x (m2u p) = � 2m1Rp; (32c)

@t m3 + r x (m3u p) = � 3m2Rp; (32d)

@t (m1u p) + r x
�
m1u 2

p

�
= � Rm0u p + 18�

� � gm0(u g � u p): (32e)

with

mk =
Z Smax

0
Sk n (t; x ; S) dS; (33)

yEMSM can also be used in the context of a size discretization in each section as a hybrid approach making the link between Multi-Fluid
and high order moment method [122]
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Figure 6. Comparison of the �nal mass in the two halves of the size phase space between the 10 section discretiza-
tion and the 40 section discretization , in the evaporating case. (Top) 10 section discretization. (Left) mass in the
�rst half of the size phase space (sections 1 to 5). (Right) mass in the second half of the size phase space (sections
6 to 10). (Bottom) 40 section discretization. (Left) mass in the �rst half of the size phase space (sections 1 to 20).
(Right) mass in the second half of the size phase space (sections 21 to 40).
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and the unclosed termn (S = 0) represents the number of disappearing droplets due to evaporation.Smax is the
maximum size of the distribution. The system (32) has been investigated in [57, 83, 60] from both modeling and
numerical point of view. The realizability issue is raised as the moment space in which the moment vector lives is
a convex subspace of(R+ )4 but with a quite complex shape, as explained in part 3.7.2. Numerical methods (e.g.
transport schemes) must be carefully developed to avoid approximations of the moment vector that would be out
of the moment space, resulting in failure of the simulation.

Phenomena involved in (32) (i.e, evaporation and convection) can be decoupled through an operator splitting
approach [70]. Therefore, the subsystem that represents the evolution due to the evaporation and Stokes drag is
given as:

@t m0 = � Rpn (S = 0) ; (34a)

@t m1 = � m0Rp; (34b)

@t m2 = � 2m1Rp; (34c)

@t m3 = � 3m2Rp; (34d)

@t (m1u p) = � Rpm0u p + 18�
� � gm0(u g � u p); (34e)

whereas the one for the convection is expressed as:

@t m0 + r x (m0u p) = 0 ; (35a)

@t m1 + r x (m1u p) = 0 ; (35b)

@t m2 + r x (m2u p) = 0 ; (35c)

@t m3 + r x (m3u p) = 0 ; (35d)

@t (m1u p) + r x
�
m1u 2

p

�
= 0 : (35e)

For the numerical resolution of both (34) and (35), the main issue is to keep the integrity of moment set at anytime
of the computation. An appropriate closure for the termn (S = 0) in Eq.(34a) and an accurate evolution of
momentsmk through (34a)-(34d) due to evaporation require particular numerical strategy which will be detailed
in part 3.7.3. The resolution of the pressure-less system (35) will be explained in section 3.7.4.

3.7.2 Moment space issue

The major challenge for numerical methods designed for evaporation and transport is to keep the integrity of the
moment vectorm , i.e to ensure thatm = ( m0; m1; m2; m3)t belongs to the moment space at any time of the
resolution process. Yet, even if the moment spaceM3 (0; Smax ) where lies the size moment vectorm is convex,
it has a complex geometry in the semi-open space(R+ )3 [83]. A simpler space can be determined by using the
canonical moments [23]. The geometry of the space of the canonical moments vectors is much more simpler than
the one of the moments since it is then the cube[0; 1]3. The canonical moments are then very useful in order to
check the belonging to the moment space and design numerical schemes for system (34) and (35).

Let us recall that in case of the evaporation, one faces with the Hausdorff �nite moment problem for the
momentsm which is �nding a positive real valued function~n de�ned on [0; Smax ] from its moment setm .
This is a bottleneck problem for the accurate evaluation of the evaporative �uxn (S = 0) in Eq.(34a). In [83],
the solution for~n is based on the NDF reconstruction, using entropy maximisation of the moment setm which
allows to evaluate the evaporative �ux and droplet size evolution through a kinetic based numerical scheme for the
evaporation [83].

3.7.3 Evaporation scheme

In [83], it has been shown that the numerical solution of the equation system (34a)-(34d) within a time step� t can
be given as:

exp (� tR pA ) m (� t) = m (0) � � � (� t) (36)
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where the �ux at zero size� � is expressed as:,

� � (� t) =
Z � tR p
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and the translation nilpotent matrixA is given as follows:
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and has the following property
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Starting from the Maximum entropy reconstruction of the size distribution~n (the technique introduced in 3.6), the
evaluation of the evaporation process through Eq.(36) is made in two steps.

First, the disappearance �ux� � at zero size is evaluated, and corresponds to the part of the moment that will
disappear during a time step� t. The moments are then corrected as:

m̂ = m (0) � � � (� t) (40)

wherem̂ 2 MN (� tR p; Smax )) . Then, as far aŝm is computed, one needs to compute the remaining contribution

exp (� tR pA ) m (� t) = m̂ : (41)

This accounts for evolving the size distribution by means of the translation of its moments in size phase space [83].
Recalling that for anŷm , there exists one unique lower principal representation technique of the vector of moments

by using weights(wi ) i 2 [1;n ] and abscissas
�

Ŝi

�

i 2 [1;n ]
2 ]� tR p; Smax [ Therefore the corrected moments are then

expressed, thanks to the quadrature pointsi , as
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22



Atomization and Sprays, Special Issue 2014 Eulerian Moment Methods for Automotive Sprays

where weights(wi ) and abscissaŝSk
i are computed through the Product Difference (PD) algorithm, forn = 2 ,

given in [84]. Thanks to the structure of matrixA given in Eq.(38),m is computed through quadrature points
associated tôm as

m (� t) =
nX
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: (43)

3.7.4 Convection scheme

In this part, we brie�y discuss about the numerical scheme used to discretize the equations of system (35). Because
of the conservative form of system (35), the �nite-volume method [70] is a natural candidate for its discretization.

Usually, high order �nite volume methods use some non-constant reconstructions of the variables to evaluate
the �uxes between the cells. But, the properties of the scheme are conditioned by the expression of the �uxes. Two
dif�culties arise here. The �rst one concerns the way to do the reconstruction of the moments in order to keep
the integrity of moment set. It has been seen that for a high order in space scheme, an independent reconstruction
of each moment does not insure that the moment spaceis preserved [125, 85]. A second dif�culty concerns the
computation of the �uxes from the reconstructed quantities. If an approximate time solver is used (Explicit Euler,
Runge-Kutta), the �uxes computation will introduce errors for non constant reconstructions, and the preservation
of the moment space would not be guaranteed any more.

In [60], a second order scheme through piecewise linear reconstructions of conserved quantities within cells
are considered. In order to render realizable the scheme, the canonical moments, which are proven to be trans-
ported quantities by system (35) and to satisfy a maximum principle are used for the reconstruction. For the time
integration, a kinetic-based numerical scheme, using the ideas developed by Bouchut [11], has been developed
[60]. For the latter, the �uxes are accurately evaluated, thanks to the exact resolution of the kinetic equation.

3.7.5 Academic realizations through EMSM method

Through academic test-cases, the robustness, the accuracy and computational ef�ciency of the EMSM method
along with its numerical schemes and algorithms have been tested within 2D test-cases [60, 57]. Firstly, its is
implemented in a Eulerian solver dedicated to spray simulations called MUSES3D [20, 82], developed at EM2C
Laboratory carried out considering a stationary gas-phase through Taylor Green Vortices. Then, the free jet simu-
lations are conducted with an academic solver, coupling the ASPHODELE solver, developed at CORIA by Julien
Reveillon and collaborators [99, 97], with MUSES3D. For the latter case, the gas is therefore not frozen.

The evaporating polydisperse spray described through EMSM method has been successfully validated from
both qualitative and quantitative point of view, comparing it to MF method (see �gure 7) for each simulation.

3.7.6 Recent extension of EMSM method to capture hetero-PTC: CSVM method

Despite its ability to accurately capture the size evolution of polydisperse evaporating droplets, the EMSM method
lacks of accuracy to capture size-velocity correlations of droplets. This is due to the assumption of unique velocity
for all droplets sharing the same location at a given time. Yet the work conducted in [122] has recently addressed
this issue and a new method called Coupled Size-Velocity Moment (CSVM) method has been developed. In
that case the NDF function is taken as the one given through Eq.(16). The pro�le for the velocityu p has been
presumed in terms of the size such that droplets with a zero size share the velocity with the gas-phase. Therefore,
the numerical scheme originally developed for EMSM method has been extended since one needs to transport
one more moment per spatial dimension due to the new size-velociy correlation assumption done at the kinetic
level. Moreover, some further numerical efforts are required since the size-velocity correlation issue can yield
distributions very close to the boundary of moment space. In such case, in order to make converge Maximum
entropy algorithm with a reasonable CPU time and increase the accuracy of the method, the following numerical
development has been achieved in [122]:
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Figure 7. Total mass density of the polydisperse evaporating spray. (Top) Results at timet = 15. (Bottom) Results
at timet = 20. (Left) EMSM model. (Right) Multi-�uid model with ten sections.

• To reduce the number of iterations needed for the Newton solver to converge, a tabulation method to calculate
the NDF from its moments and associated interpolation methods have been investigated. It has been shown
that the tabulation of the initial guess lowers signi�cantly the number of Newton iterations needed, the fastest
interpolation method being the more accurate third order polynomial reconstruction for the initial guess.

• To increase the accuracy of the reconstruction, an adaptive support for the Gauss-Legendre method has been
implemented, that is, quadrature points are used only where the distribution is not too close to zero.

• At moment space boundaries, the distribution function represents the sum of diracs which involves a lower
number of parameters less than the number of momentsN . So the idea is that there is a transition zone in
which one goes from a situation whereN parameters (N moments) are needed (the interior of the moment
space), to a situation where less parameters are needed (the frontier). This implies the use of less thanN
moments at borders of moment space. In this case, the number of moments used is de�ned such that one has
the same level of accuracy as the interior of moment space obtained throughN moments.

Through academic studies, the CSVM method along with its numerical tools have been proved to be more ef�cient
than the original EMSM method in capturing the segregation inside the polydisperse spray with inertial droplets
characterized by large Stokes number [122]. This is the direct consequence of capturing the hetero-PTC through
CSVM method.
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4 Implementation and tests in an engine solver

In the context of internal combustion engine applications such as the direct injection of the liquid fuel, it is impor-
tant to model the gas-phase entrainment by the polydisperse spray in the chamber under stiff injection conditions,
while taking into account the presence of moving engine parts. In contrast to previous EMSM-related work [83, 60]
where calculations were made on �xed meshes, the realistic con�gurations for injection in combustion engines
with a moving piston require computations on moving meshes. The most common technique to cope with this new
constraint is the Arbitrary Lagrange Euler (ALE) formalism, which was originally introduced in the context of
single-velocity �uid �ows [53]. Based on the same philosophy, the necessary numerical adaptations of the EMSM
approach to ALE formalism has been recently developed and given access to simulations where two �uids, the
compressible gas and the polydisperse spray coexist [35]. Moreover, based on the splitting strategy provided by
ALE method, a new robust and accurate two-way coupled EMSM method has been developed, describing strong
mass and momentum interactions between the compressible gas and evaporating polydisperse spray [35, 58]. All
these developments for EMSM method have been integrated in the industrial CFD code IFP-C3D dedicated to com-
pressible and reactive �ow simulations under moving geometries. In the reminder of this chapter, �rst, the core
structure of the ALE formalism with adaptation of EMSM method to it is brie�y presented. Then based on the
splitting strategy provided through ALE, the two-way coupling modeling and numerical strategies are discussed.
Afterwards, some detailed comparisons are made between the proposed two-way coupled EMSM approach and a
classical two-way coupled Lagrangian technique used in IFP-C3D software for injection simulations in engines.
Finally, the approach is tested under realistic injection conditions: high velocities, real injectors with 3D geometry
and small injection diameters.

Moreover, we remind that the present Eulerian model can only be used in the framework of sprays, that is
not directly at the mouth of the injection process where primary atomization has to be described. The high order
moment method can only be used once the spray is formed and this why, in the injection test-cases proposed
hereafter, the injection velocity is representative of the velocity of the spray encountered at some distance from the
nozzle where the liquid fuel has already been atomized and can be adequately considered as a spray.

4.1 Adaptation to the Abritrary Lagrangian Eulerian (ALE) formalism

4.1.1 Overview of peculiarities introduced by the ALE formalism

According to ALE, the complete resolution of conservation equation system is solved using a splitting strategy,
where each stage corresponds to a class of physical phenomena. Such as in the standard Strang splitting method,
the �rst stage is refereed asphase Asince it is concerned with drag, heat and evaporation source terms in EMSM
model. In case of a two-way coupled EMSM method, phase A contains also source terms in Navier Stokes equation
system. The associated two-way coupling modeling and numerical strategy for robust and accurate simulations are
presented in section 4.2. Unlike Strang method, in ALE, a new referential frame is introduced for the treatment of
remaining terms in conservation equations, leading to (phase B) and (phase C) involving respectively acoustic and
convective terms. Since we are in a pressure-less gas formalism in the context of EMSM method, the treatment
of phase Bis straightforward, whereas the robust numerical method, preserving the moment space developed in
[60] is used for thephase Ctreatment [58]. For a better understanding of the EMSM under ALE formalism, a
schematic of the implementation of the EMSM model in the IFP-C3D code structure is presented in Fig. (8). In
the next part, a preliminary test-case verifying the adaptation of EMSM method to ALE formalism is presented.

4.1.2 Elementary tests

The objective of this test case is to ensure that the implemented model is stable with mesh movement through
one-way coupling with gas phase (no effect of the spray on the gas motion). The evolution of homogeneous �elds
of liquid and gas are considered in a closed high-pressure cell. The bottom boundary of this cell corresponds to
a moving piston at the bottom dead center. The gas is taken as air, and the particles are initially stationary. No
ignition occurs, and no thermic effect is considered. Also, no special treatment of the boundary is considered. The
computation ends after a revolution of the crank, with the crank angle degree (cad) ranging in[� 180; 180]. The
high-pressure cell and the movement of the piston are described in Fig. (9).

The boundary conditions are(u p � u piston ):n = 0 on the surface of the piston, andu p :n = 0 at the
upper edge of the domain. The size distribution is constant. During the compression and expansion of the high-
pressure cell, the computational cell volumes change is homothetic. The results are displayed for the number
densitym0 and the surface densitym1 with a 1200 (30� 40) cell grid. Computational results are presented in
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Figure 8. Scheme of the implementation of the EMSM in the operator-split structure of the IFP-C3D code

Figure 9. Considered piston movement during the computation. The computation starts atcad = � 180and ends
at cad = 180.

the case of a spray. Figure (10) displays the results for the moments in the case of a spray at different instants
cad = � 100; � 30; 50; 180. In the various sub�gures, the distance where the value of the moments is null is the
distance traveled by the piston. This is a typical case where the operator splitting done in the algorithm of IFP-C3D
is legitimate since the speed of sound is at least one order of magnitude higher than the convective speed of the
�uid. In fact, the speed of sound exceeds 300 ms� 1. At the same time, with a rating of 1200 trmn� 1, and stroke of
about 10 cm, the piston average velocity and that of the dragged �uid is much smaller than the speed of sound in
the gas.

The two �rst instants (cad = � 100andcad = � 30) correspond to the compression of the high-pressure cell.
The two following ones (cad = 50 andcad = 180) correspond to the expansion of the domain. Inertial particles
in the in�nite Stokes limit are considered, since no interaction with the gas phase is taken into account. They stick
to the piston as it moves forward. This behavior is observed in Fig. (10)-top and is responsible for the singularity
present at the piston surface. Meanwhile, the moment �eld downstream of the piston is unchanged. This is a direct
consequence of the assumption made for pressure-less gas dynamics, wherein the speed of sound is null, and
consequently no pressure waves modify the �eld. In Fig. (10)-bottom, the� -shock moves forward relative to the
mesh. The enlargement of the� -shock has two explanations. The �rst one is the numerical diffusion. The second
is that the computational cell volume expansion contributes to the� -shock enlargement. Meanwhile, upstream of
the� -shock, in the wake of the piston, a vacuum zone is created, which is the expected behavior.

This test case assesses the robustness of the scheme implemented in IFP-C3D in the context of moving grids.
This is a substantial achievement since one recalls that this scheme has to preserve two critical stability conditions:
the realizability condition on the moments, and the discrete maximum principle on the spray velocity. This example
amply illustrates that even within the algorithm of an industrial code, sensitive stability conditions can be respected.
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Figure 10. Results in the case of a polydisperse spray form0 (solid black line) andm1 (dashed red line). Distance
X corresponds to the one-dimensional coordinate along which the piston moves : from left to right for sub�gures
on the top row (CA 100 BTDC and CA 30 BTDC) and from the right to the left for sub�gures on the bottom row
(CA 50 ATDC and CA 180 ATDC).

4.2 Accounting for two-way coupling in stiff conditions

So far, the high order moment method EMSM has been argued to be the best compromise in polydisperse spray
modeling for our problem. Yet the underlying two-phase �ow physics encountered in Internal Combustion Engines
are driven through two-way mass, momentum and energy interactions between phases. It is therefore necessary
to describe the presence of spray, while determining the gas-phase governing equations. Let us recall that the
volume fraction� � 10� 2 associated to the spray is small enough to describe the effect of the spray-phase on the
gas-phase through source terms only. The gas-phase classically given by the compressible Navier Stokes equations
is thus written down as

@t � g + r x � (� g ug ) = Smass ;

@t (� g Yk ) + r x � (� g Yk ug ) = r x � (� gD k r x Yk ) + _wk + Sspecies
k ;

@t (� g ug ) + r x � (� gug 
 ug ) = �r x (Pg) + r x � (� ) + Smom ;

@t (� g Eg) + r x � (� g Eg ug ) = �r x � (q) � r x � (PgIu g ) + r x (� ug ) + Senth ;

(44)

where source termsSmass andSspecies
k are the fuel vapor mass addition to the gas-phase due to the evaporation,

Smom is the momentum exchange terms between phases due to spray evaporation and drag,SE enth is the total
energy production in the gas due to the spray evaporation. The mass density� g, the velocityug , the total energy
Eg and the pressurePg are quantities related to the gas-phase �ow. The indexk denoting species involved in the
gas,Yk andD k represent respectively the species mass fraction and molecular diffusion coef�cient.

The expressions relative to the above mentioned source terms are naturally arisen through the integration of
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the kinetic model described by Eq. (10) and are thus given as

Smass =
Z Z Z

� d

4
p

�
S1=2 f R S dS du dT;

Sspecies
k =

Z Z Z
� F u;k

� d

4
p

�
S1=2 RS f dS du dT;

Smom = �
Z Z Z

� dS3=2

6
p

�
D r;p f dS du dT

+
Z Z Z

� d

4
p

�
u S1=2 f R S dS du dT;

Senth =
Z Z Z

� d

4
p

�
S1=2 Cp RS f dS du dT:

(45)

HereCp is the speci�c heat capacity at constant pressure. In this example,� F u;k = 1 with Fu = k since droplets
are exclusively composed of fuel molecules. We recall that, based on the monokinetic assumption previously intro-
duced for the local spray velocity distribution, these source terms have been reconstructed through the maximum
entropy reconstruction of the size distribution function [35, 58, 36].

4.2.1 Source term reconstruction and two-way coupled model

Given the expressions (45), one can see that fractional moments are needed to close source terms involved in the
gas phase. These are written as

mk+1 =2 =
Z Smax

0

Sk+1 =2

6
p

�
~n(t; S)dS; k 2 f 0; 1g: (46)

Even though the classical EMSM method requires only the transport of integer moments, fractional moments of
the distribution can be reconstructed from the ME method. The accuracy of them3=2 moment reconstruction,
accounting for mass concentration, is demonstrated in [82, 83]. This reconstruction technique is therefore chosen
for our problem. Let us now give the new expression for the ODE system involving both the gas and the spray in
phase A of ALE, under thed2 type of evaporation law:

dt (� g) =
3
2

m1=2Rs (47)

dt (� gug) = � m1=2
ug � ud

� �
p

Smax +
3
2

m1=2Rsud (48)

where� �
p = � dSmax =(18�� g) is the characteristic dynamic time scale associated to the maximum sized droplet

Smax in the spray. The evolution of the gas-phase internal energyeg due to evaporation is

dt (� geg) =
3
2

m1=2Rsed (49)

whereed the spray-phase internal energy. Let us recall that the evolution of the spray velocity is accounted by the
equation:

@t (m1ud) = m0
ug � ud

� �
p

Smax � RSm0ud (50)

However, one can also write the previous equation in the following way to guarantee automatically the momentum
conservation in phase A:

@t (m3=2ud) = m1=2
ug � ud

� �
p

Smax �
3
2

RSm1=2ud (51)
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4.2.2 Description of the proposed strategy

In our problem the two-way interactions occur under stiff conditions in an internal combustion engine which in-
volve rapid variations related to mass, momentum and energy exchanges. Moreover, associated physical time
scales, depending on droplet size variable, are becoming smaller and smaller because of the evaporation phe-
nomenon. Under such constraints, the numerical stability is required to be unconditionally guaranteed while the
moment space is conserved. An accurate and stable resolution of System (34) based on a kinetic scheme, has been
developed in [83], preserving the moment space. The latter has been proven to be of at least �rst order of accu-
racy but with small numerical errors making it very accurate [36]. Conserving the spray evaporation scheme as
developed in [83], a stable and accurate two-way coupling numerical strategy for the coupled resolution of System
(34a)-(34d), Eq.(47), Eq.(48), Eq.(51) and Eq.(49) has been recently developed in [35, 58] and proved to preserve
moment space. In order to guarantee the numerical stability under small dynamic time scales for droplets, a third
order A-stability and L-stability singularly diagonally implicit Runge Kutta method (SDIRK)[49] has been used
for the coupled resolution of Eq.(48) and Eq.(51). The time integration of SDIRK within a time step is illustrated
in Figure 11. Let us recall that although the scheme is originally developed for constant d-square evaporation law,
its extension to more realistic laws such given in [1] has been also achieved through preliminary works [36, 33].

In the next section, both qualitative and quantitative evaluation of the two-way coupling strategy will be inves-
tigated.

( )nk tm ( )1+nk tm

( )ngg tur

( )1+ngg tur
( )nd tum 2/3

( )12/3 +nd tum

ME

( )itn

SDIRK

( )ik tm
( )itm 2/3

( )itm 2/1

evap_mom

( )ig tr
( )ig te

Figure 11. Illustration of the mass and momentum two-way coupled exchanges resolution between the evaporating
spray and the gas in phase A of the ALE solver (ME stands for Entropy Maximisation,t i are the intermediate
timings for the resolution of the Runge Kutta steps betweentn andtn +1 ).

4.2.3 Evaluation strategy of the method

As mentioned before, the two-way coupling method is intended to handle stiff injection conditions, guaranteeing
robustness and accuracy of numerical solutions in realistic applications. Therefore the next section 4.3 is dedicated
to verify these claimed features with the help of test cases through IFP-C3D code.

• In section 3, we exclusively handle DNS Eulerian models for the description of a polydisperse spray and its
two-way coupling with a turbulent �ow �eld. However, since we want to evaluate the behavior of the model
in the context of internal combustion engines, for which the present interest and implementation relies on the
code IFP-C3D, we have implemented the models and numerical schemes in the IFP-C3D code. In the case
of spray injection, a turbulent model for the gaseous �ow �eld is needed and we rely on a RANS approach
purely for the unsteady gaseous �ow �eld, since no model is presently available which is consistent with
polydisperse spray dynamics and two-way coupling at a RANS level, except a very recent contribution [34].
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Switching to a comprehensive and consistent two-way coupled RANS model would require a much deeper
investigation in terms of mathematical structure of the resulting systems of equations and the development
of new numerical strategies. The two-way coupling is thus conducted in the chosen con�gurations on the
non-�uctuating quantities only, for both Lagrangian and Eulerian models.

• First, the accuracy and the stability of the solutions under different Stokes regimes, typical to ICE conditions
are investigated through comparisons to widely used existing two-way coupled Lagrangian Stochastic Parcel
method in IFP-C3D software. In that case, instantaneous mass, momentum and energy exchanges between
phases are resolved through the two-way coupling equation system presented in part 4.2.

• Second, the robustness of the method under realistic internal combustion engine conditions, taking into
account typical injection velocity and injection conditions, is investigated. This implies a fully turbulent
two-phase �ow. To treat turbulence physics in the gas-phase, a standardk-" (RANS) model is available
in IFP-C3D. Although our method derived in part 4.2 does not allow us to describe the two-way coupling
in terms of �uctuating quantities but only mean quantities, it is still important to verify the method within
the presence of a standardk-" gas model. Let us recall that only the robustness can be investigated since a
turbulence model such as the one derived in [34] is required for a validation against experimental results.

4.3 Injection test cases

The �rst test case is chosen such that one has the corresponding experimental data for a thin, polydisperse and
collisionless spray under the turbulent dispersion of droplets [37]. However, we will limit our study to a laminar
�ow regime. The test case consists of a 2D con�guration presented in Fig. (13). This is proportional to a 2D
mesh in they andx directions. This 2D plane is composed of square cells with a length of 0.25 mm (320 in the
x-direction, and 800 in they-direction). However, two cells with a length of 0.5 mm along thez-axis had to be
kept since IFP-C3D software is a 3D code. The32 � 16 cell additional part at the top of the mesh is dedicated to
the injection type inlet condition. Periodic boundary conditions are set on faces orthogonal to thez-axis, and free
exit boundary conditions are set for the part localized aty = 0 , x = 40 mm andx = � 40mm. The cases presented
in this section involve injection of a fuel spray and gas with velocityuinj = 18 m/s. The gas phase is taken as air,
with initial pressurePg = 105 Pa, temperatureTg = 293 K, and viscosity� g = 1 :99� 10� 5 kg/m/s, whereas the
fuel is taken as theC14H30 species, with a density� = 763 kg/ m3. Some other initial thermodynamic quantities
can be found in Table 1.

Cp;g 1014:04 Jkg� 1K � 1

Cv;g 724:66 Jkg� 1K � 1

 g 1:399 -

eg 21318:25 Jkg� 1

Rg 8:314 -

Cv 1435:91 Jkg� 1K � 1

e � 59784:88 Jkg� 1

Table 1. Values of heat capacity in constant pressure of the gasCp;g , in constant volume of the gasCv;g and the
fuel sprayCv . Speci�c internal energies of the gaseg and the spraye, the perfect gas constantRg and the ratio
 g = Cp;g =Cv;g .

We introduce a characteristic lengthL 0 = 8 � 10� 3 mm, which is the injection diameter and the corresponding
time � g;0 = L 0=uinj for the gas �ow. In our case, the mean droplet diameter being signi�cant for the study of the
disperse phase, the characteristic dynamic time scale for the droplet population is given as a function of the SMR
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number:

� 0 =
2�r 2

SMR

9� g;0
(52)

We also de�ne some dimensionless numbers such as the fractional volume occupied by the dispersed phase� v and
the Stokes numberSt expressed as the ratio of the droplet dynamic time response� 0 over the gas characteristic
time � g;0.

Figure 12. Illustration of Rosin-Rammler distribution used in all the multidimensional computations.

The computations are run with a polydisperse droplet population governed by the Rosin-Rammler distribution
[102]:

f (r ) = q
r q� 1

r q
SMR

exp
�

�
r q

r q
SMR

�
(53)

wherer is the particle radius,rSMR is the Sauter mean radius, andq is a coef�cient determining the sharpness of
the distribution. The distribution considered here hasq = 3 :5, see Fig. (12).

4.3.1 Eulerian spray initialization

One needs to ensure that identical boundary conditions are applied for both Eulerian and Lagrangian simulations.
Given the value of injected liquid volume fraction� v and the distribution function shown in Fig. 12, one can
compute moments of the distribution at injection for the Eulerian simulations. However, the injection of Lagrangian
particles is controlled by the total liquid massml , the injection time lengtht inj and the injector radiusr inj . To have
the same injection conditions in Lagrangian cases, we �rst compute the mass �ow rate for a given inlet velocity
and inlet volume fraction by the formula

_ml = � v�u inj S (54)

with S the injection section for the two-phase �ow and�S corresponds to the injection section for the Lagrangian
particles. From the latter,r inj can be easily calculated. Moreover, from the knowledge oft inj , ml is deduced from

ml = _ml t inj (55)

Lagrangian particles are injected in the middle of each cell face belonging to the inlet condition, as sketched out
in Fig. 13.64 cells at the top of the mesh leads to a total of64 injectors. Since the mesh is a 2-D plane, the radius
and the injection section related to each injector remain the same.

4.3.2 Comparisons between Eulerian and Lagrangian simulations

In the context of injection simulations, the two-way coupling effect on �ow dynamics can not be neglected when
the mass ratio of the dispersed phase over the gas phase becomes signi�cant. Moreover, inertial droplets inside
a distribution have a slow response to changes in the gas whereas light particles barely follow the carrier �ow.
The spray dispersion is thus in�uenced by the size of droplets. In internal combustion engines, a broad range of
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r SMR 5� m 20� m

St 0:48 7:67

� v 2:51� 10� 4 2:51� 10� 4

� m 0:19 0:19

� v 1:4 � 10� 2 s 1:4 � 10� 2 s

� v =�0 65:7 4:1

Re 7200 7200

Table 2. Dimensionless characteristic values at injection: Stokes numbersSt, spray volume fraction� v and mass
loading� m are computed through the Sauter mean radiusr SMR .

Figure 13. Illustration of the 2D plane geometry - The injection domain is 20 cm depth and 8 cm width.

fuel droplet sizes needs to be considered. We run injection simulations under two types of droplet distributions
characterized by different Sauter mean radiusr SMR but the same mass loading� m or volume fraction� v, as
observed in Table 2. These initial characteristic numbers are chosen such that droplet-droplet interactions can be
assumed to be neglected. Note that we adopt a simpled2 evaporation law of droplets under a constant evaporation
time � v for both low and high inertia droplets. The small ratio of the evaporation time over the characteristic
droplet time� v =�0 shows that the spray with high inertia droplets undergoes a faster evaporation.

For each distribution, we run both Lagrangian and full Eulerian resolutions of the disperse �ow in exactly the
same conditions. The initial spray mass �ow rate is taken as2:758� 10� 5 kg/s. A total number of 6.4 million
numerical particles, insuring the convergence of the Lagrangian solution, injected to the domain. In the following,
results are displayed for a simulation time of1:4 � 10� 2 s. The latter also corresponds to the characteristic
evaporation time� v , as shown in Table 2. The results presented in the following are for evaporating cases. More
details about the tests in non-evaporating conditions can be found in [36].

Injection of low inertia droplets Injection results in case of light droplet population with Sauter mean radius of
r SMR = 5 � m are illustrated in Figs. 14 and 15. The �elds of spray volume fraction and spray velocity for both
Lagrangian and Eulerian sprays are quite similar. The global droplets dynamics are well reproduced. Let us note
that the front of the Lagrangian spray is sharper than the Eulerian one.

The vapor fuel along with the temperature �elds are also very well represented, as seen in Fig. 15. This shows
that the mass transfer and temperature modi�cation in the gas due to the evaporation between phases are well
captured through the two-way coupling algorithm. Moreover, the gas velocity �eld driven by the Eulerian spray is
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qualitatively similar to the one driven by the Lagrangian spray, see Fig. 14. There is a good quantitative comparison
between both approaches.

Figure 14. Results for an evaporating spray with a droplet population ofr SMR = 5 � m at time1:4 � 10� 2 s. Left:
Spray volume fraction.Right: spray velocity along they-axis. In each panel, Lagrangian spray is displayed on the
left side and Eulerian on the right side.

Figure 15. Results for a droplet population ofrSMR = 5 � m under a constant evaporation velocity at time1:4 �
10� 2 s. Left: Evaporated fuel mass fraction.Right: Gas temperature. In each panel, Lagrangian spray is displayed
on the left side and Eulerian on the right side.

Injection of high inertia droplets In case of a droplet population withrSMR = 20� m, results from �elds of
spray volume fraction, spray velocity, gas velocity are illustrated in Fig. 16, whereas Fig. 17 shows the �elds
of evaporated fuel mass fraction and gas temperature. Through spray velocity and spray volume fraction �elds,
signi�cant differences between Eulerian and Lagrangian sprays can be observed. There is a high concentration of
Eulerian droplets at the front side of the spray. This situation can be understood through the fact that the pressure-
less gas formalism adopted for the spray modeling where the spray momentum equation is weakly hyperbolic
without any diffusion terms. But this is not enough to explain the real situation since for low inertial droplets the
pressure-less approach was working perfectly. The second issue is that in real situations, droplets with different
sizes and different velocities can cross. Therefore, from the modeling point of view, the droplet trajectory crossing
effect should be taken into account. Yet, the EMSM method has been shown to fail for that type of con�guration.
This failure stems from the assumption that all droplets located in the same cell have the same velocity. However,
high inertia droplets cannot be considered to have the same velocity, since the drag force between phases is strongly
conditioned by the droplet size. So one can conclude that the high droplet concentration observed for Eulerian
spray leads to some unphysical solutions. Yet, the core of the Eulerian spray is quite similar to the Lagrangian one.
Moreover, the high droplet accumulation is drastically reduced in case of evaporating droplets. This behavior is
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Figure 16. Results for an evaporating spray with a droplet population ofr SMR = 20� m at time1:4� 10� 2 s. Left:
Spray volume fraction.Right: spray velocity along they-axis. In each panel, Lagrangian spray is displayed on the
left side and Eulerian on the right side.

Figure 17. Results for a droplet population ofrSMR = 20� m under a constant evaporation velocity at time
1:4 � 10� 2 s. Left: Evaporated fuel mass fraction.Right: Gas temperature. In each panel, Lagrangian spray is
displayed on the left side and Eulerian on the right side.

expected since evaporation leads to a decreasing droplet inertia for which the monokinetic assumption without the
polydispsersity in velocity, works quite well. This in an encouraging situation for IC engine operating conditions,
since the fuel droplet evaporation takes place under high temperatures and pressures. Fields of evaporated fuel
mass fraction and the gas temperature between the Lagrangian and Eulerian sprays, as shown in Fig. 17, match
quite well.

Moving mesh situations Representations of the spray radius showing the Lagrangian particules radius on the
left side and the average smr (r 32) deduced from the transported moments computed with EMSM on the right
side show the fundamental differences between the two formalisms. Moreover Fig. 18 shows that the reduced
information of the moments distribution succeeds in getting the correct qualitative and quantitative behavior of the
spray dynamics even in the case of a moving mesh situation where the bottom part of the geometry features an
engine piston characteristic kinematics at a velocity of 2000 rpm with a 0.1 m stroke.

However some differences can be observed between Lagrangian and Eulerian simulations. They can be at-
tributed to two origins, the �rst being the level of modeling assumptions, in terms of velocity conditioned on
droplet size, which is different between the two simulations. Indeed, we can clearly see that, even if a good level
of agreement is reached, the size-conditioned dynamics of the droplets can not be reproduced with the present
original EMSM model. The CSVM model developed by A. Vié [122] would have the capability to handle it as ex-
plained in section 3.7.6. The second is related to the fact that IFP-C3D has some limitations in terms of Lagrangian
capabilities (stochastic boundary condition injection of the polydisperse spray, two-way coupling treatment on un-
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structured meshes, ...) inherited from previous developments. In this context the Lagrangian simulations offer
a reference solution in order to verify the proposed new Eulerian strategy, but a fully quantitative validation and
evaluation of the convergence of the Eulerian method as compared to the Lagrangian one on the 2D injection con-
�guration is beyond the scope of this work, and in particular our Lagrangian approach does not allow to conduct a
convergence study.

(a) 30 BTDC (b) 70ATDC

Figure 18. Comparisons between a Lagrangian simulation (left side) and the equivalent Sauter mean radius
reconstructed from the transported moments (right) of an evaporating spray injected at a moderate velocity of 18
ms� 1 in a moving mesh situation featuring an engine speed of 2000 rpm and a stroke of 0.1 m (other dimensions
are the same as those used in the previous simulations). Visualisations at crank angle 30 before top dead center -
CA=30 degrees BTDC (a)- and at crank angle 70 after top dead center - CA = 70 degrees ATDC (b).

4.3.3 High pressure injection conditions

This test case is intended to assess the capacity of the EMSM model to be operated under realistic injection condi-
tions for practical Diesel applications. As stated in Section 3, spray-gas turbulent interactions are not developed at
this stage. The 3D injection computations will be conducted in a RANS framework for the gas by using a standard
k-" approach for turbulent diffusion of gaseous related quantities. As stated in introduction, the turbulence genera-
tion in this high velocity jet con�guration is only the result of the air motion due to the two-way coupled spray-gas
macroscopic interactions. The test case features a 3D simulation of a 200� m diameter single hole injector inside
a cylinder (60 mm diameter and 60 mm height), typical of a test cell geometry for actual Diesel injectors, which
implies very different spatial scales. The mesh re�nement is illustrated in Fig. 19. The smallest cells size inside
the injector are around� 5 � m.

The spray is injected at a velocity of 100 ms� 1 in a quiescent ambient atmosphere (Pch =1 bar,Tch =293 K).
This introduces very stiff conditions due the strong gradients related to the dynamics of injection and to the density
ratios between the liquid and the surrounding gas. The fully coupled EMSM model described in the previous
sections is tested under these conditions. The standardk-" model is activated in the gaseous phase. The volume
fraction at the injection boundary is that of a disperse spray (� v ' 10� 2) as the physics represented by the model
does not include any dense effects at this stage. One can notice that, in spite of the very stiff conditions, the model
remains stable. The smallest time steps are of the order of 10� 8 s and the computation lasts 16 hours (on 128
processors) for a total physical time simulated of 4 ms.

Results in Figs. 20 and 21 show how the spray develops from the onset of injection where a disperse phase
assumption is made down to the fully developed spray region in the far �eld of the injector. Figure 20 shows the
liquid volume fraction spatial distribution very close to the injector outlet. A typical cone shape distribution is
observed due to the mixing with the surrounding gas. The qualitative aspect of the injected spray distribution and
evaporated fuel distribution matches those issued from observations of classical high-pressure injected spray. Due
to the two-way coupling method described above, the high velocity liquid jet generates turbulent energy in the gas
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Figure 19. Injector hole geometry and chamber. Notice the re�ned boundary condition of the injection device
revealing the multiscale nature of this case.

through macroscopic air entrainment at the tip of the injector (Fig. 22).

Figure 20. Eulerian volume fraction of liquid computed with the EMSM approach.

Figure 23 represents the evolution of the liquid and vapor concentrations at different axial positions. One can
notice an opening of the spray jet along the injection direction. The fuel vapor distribution follows that of the
liquid with higher concentrations on the jet axis. One can observe that vapor is entrained in the periphery of the
jet which can be attributed to the turbulent transport of gaseous species. Figure 24 con�rms that the highest vapor
concentrations are located in the front of the jet whereas the liquid concentration continuously decreases along the
jet axis under the evaporation process. A higher vapor concentration is observed in the near injector region and
can be explained by the evaporation of the smallest droplets.

From these results, one can deduce penetration lengths for the liquid and for the gas that are the relevant
quantities of practical interest for engine simulations. Figure 25 presents the liquid penetration based on the
average liquid volume fraction of the polydisperse spray. It is calculated at an axial position where 10� 3 of the
maximum value of the volume fraction is reached. Different initial conditions on the spray volume fraction are
tested with variation between a low volume fraction� v = 10 � 4 to a higher volume fraction� v = 10 � 2. For
this last case two combinations of Sauter mean radius and droplet number are tested resulting in the same spray
volume fraction: (SMR=20� m, N=5:0581011) and (SMR=5� m, N=3:23 1013). One can notice that for these last
two conditions the spray penetration is much more important as the overall inertia of the spray is higher. In this
case high inertia case, the penetration is most important for the spray having the largest droplets. This is what
would be expected on a qualitative level.

The two-way coupled numerical approach described above is currently being extended to handle complex
evaporation and drag laws which are classically used in engine spray conditions. This will permit quantitative
comparisons with real spray measurements and the next validation steps are the subject of these ongoing devel-
opments of realistic nonlinear laws for drag and evaporation to compute thermodynamic conditions relevant for
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Figure 21. Gaseous fuel mass fraction evaporated with the EMSM approach.

Figure 22. Gaseous turbulent kinetic energy related to high jet velocities.

Figure 23. Radial pro�le of liquid volume fraction (left) and evaporated fuel mass fraction (right) at different axial
positions:z=4D inj , z=16D inj , z=32D inj .
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Figure 24. Axial pro�le of liquid volume fraction (left) and evaporated fuel mass fraction (right) at different
consecutive instants betweent=0 (start of injection) andt=2.4 ms.

Figure 25. Liquid jet penetration with time for different initial conditions on charge: low charge (� v = 10 � 4) -
moderate charge (� v = 10 � 2) with two r SMR values : 5� m and 20� m.

engine applications.

4.4 Concluding remarks on injection simulations

In this section, the important issue of the ability of EMSM moment method to tackle the two-way polydisperse
interactions of droplets with the surrounding gas phase has been revealed. The method has proven to be stable
and accurate, preserving the moment space, within the multi-dimensional context and moving grid algorithms.
Through its rigorous comparison with the widely used Lagrangian method and computations of realistic injection
conditions, promising results towards IC engine applications were obtained. The good accuracy on fuel vapor �eld
and gas phase properties shows that the Eulerian method is almost on equal footing with the Lagrangian method.
The stability of the approach was assessed by full 3D computations with real injector meshing and stiff velocity
and density gradients. This point is of crucial importance for the future development and for the practical use of
Eulerian approaches.
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5 Conclusions and future directions

Throughout this paper, we have explained how to employ Eulerian methods and described the successive steps
of development of an Eulerian moment approach for automotive injection purposes including their associated
numerical method from �x to moving grids, and from one-way to two-way coupling. The main challenge was to get
high order methods while ensuring strong stability conditions leading to robustness during the whole development
process. A signi�cant part of this work has consisted of implementing and validating the EMSM model in the IFP-
C3D code, an industrial software solving reactive compressible �ows on unstructured grids including numerical
algorithms and meshing facilities to deal with complex geometries and numerous speci�c models to deal with
multiple interacting phenomena. By extensive numerical simulations of increasing complexity, it was shown that
injection cases can be handled in an Eulerian framework.

Using speci�c examples, we have shown that high-order moment methods are able to describe polydispersity
without discretizing the size phase space into sections, contrary to multi-�uid methods. The limitations of existing
methods present in the literature [91, 41] were removed permitting their use in the applications we target. In this
respect, the EMSM model can be considered a breakthrough both in terms of modeling, with a new and ef�cient
way to describe polydispersity [83], and in terms of numerical methods, with a low level of arti�cial dissipation
while maintaining the realizability condition and the maximum principle [60].

We give below an overview of our ongoing work to improve moment methods and their use for spray injection
applications:

� Other important developments in relation to size-velocity coupling will be included to widen the range of
applicability of moment methods for IC engine applications. Some issues have already been investigated on
a fundamental level but extensions and applications to real injection conditions still need to be considered.
For instance, resolving one additional moment transport equation, Vié et al. [122] have introduced the ability
to describe a correlation between the size and velocity variables, leading to the coupled size and velocity
moment (CSVM) model. Higher Stokes numbers can be reached with this approach. Other extensions of
moment methods for particle crossing trajectories and their coupling with size polydispersity [118] could
also be introduced based on theoretical derivations obtained in the PhD thesis of Damien Kah.

� Another step for the target applications is to extend the two-way coupled numerical approach to handle
complex evaporation and drag laws, which are required to deal with IC engine spray situations. These
aspects are currently under investigation [36] and the formalism introduced will also be further developed
to include phase to phase turbulent interactions as proposed in [34]. All of this will allow more predictive
simulations and validations against measurements for spray and vapor distribution in high-pressure test cells.

� The kinetic approach, as it was presented here, is well designed to compute dilute and moderately dense
spray regions. Another important evolution will consist in extending the model to higher spray density
regions where other physical mechanisms must be considered. This challenge will be addressed in the
framework of reduced order models in order to account for all the computational aspects of the injection
application, as it was introduced in the general context of two-phase �ows modeling. Let us also recall
that some preliminary works to describe the whole injection processus through Eulerian methods have been
recently initiated in [68], in the spirit of coupling kinetic based Eulerian polydisperse methods with a diffuse
interface method for the liquid atomization.
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