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Abstract

In this work, an electrolyte version of the Cubic Plus Association (¢CPA) equation of state has
been adapted to systems containing CHy, CO,, H,O and NaCl (up to 5 molal) at temperatures and
pressures up to 773 K and 200 MPa. Its purpose is to represent the phase behavior (including salting-
out effect and critical point) and the phase densities in a range of temperature and pressure
encountered in deep reservoir and basins. The goal of the parameterization proposed is not to reach a
very high accuracy for phase equilibrium and volumetric properties, but rather to develop a semi-
predictive approach to model the different phase and volumetric behaviors of this system while
allowing an easy extension to other compounds.

Without salt, predictions for pure component vapor pressures and liquid molar volumes present
an average absolute deviation (AAD) lower than 3 % compared to experimental reference values. The
pure component molar volumes out of saturation show an AAD lower than 4 %. The highest
deviations in densities are observed as expected in the vicinity of the critical coordinates of pure water
and this effect increases when gases or salts are added to the system. For each binary system, CH; +
CO,, CH,4 + H,0 and CO, + H,0, binary interaction parameters have been fitted to correctly predict
the shape of the fluid phase envelopes (including all critical points) in the entire temperature and
pressure range considered (219 K to 633 K and up to 250 MPa). The methane concentration in both
phases of the CHy + CO, binary system is represented with an AAD lower than 9 %. The methane
solubility in water is represented within 16 % and 8 % for the methane content of the vapor. The CO,
solubility in water is within 26 %, while the CO, in the vapor phase shows an average deviation of
12 %. All molar volumes are represented with an AAD lower than 3 %. The few VLE experimental
data which were found for the CHy + CO, + H,0 ternary system are fairly well predicted with the
model without extra parameter and comfort the ability of the eCPA equation of state to be extended to
multi-component systems. In the presence of salts, gas + ion binary interaction parameters have been
fitted, and all phase equilibrium are qualitatively correctly described, and more specifically the salting
out effect. The solubility of methane or CO; in brines, up to 5 molal, is represented with an AAD of
33 % in a large temperature and pressure range (up to 673 K and 150 MPa). It should be noticed that
for high temperatures, experimental data are relatively scarce and not always consistent. No data exist
for water content of the vapor phase in these conditions.

The new eCPA model can be easily extended to other components (including ions) to better
represent real fluid behavior in very deep reservoir conditions.

Keywords: Vapor liquid equilibrium, volumetric behavior, electrolyte CPA equation of state
(eCPA), NaCl electrolyte, water, CO,, CH,, critical point.



1. Introduction

Nowadays, oil and gas operators are exploring ever deeper reservoirs and basins where
temperature and pressure can be very important. Typical fluids encountered are composed of salt water
with hydrocarbons and light gases such as methane or carbon dioxide. To understand and model fluid
behavior in extreme conditions of temperature and pressure, it is necessary to rely on a thermodynamic
model able to predict densities and phase equilibrium of real fluids, including mutual solubilities,
critical points and salinity effects.

A common approach to calculate phase equilibrium in geophysical applications consists in
associating an electrolyte activity model (e.g. Pitzer model (Pitzer, 1973)) to calculate the activity of
the various species in the aqueous phase, and an equation of state to calculate the fugacity of the
compounds in the vapor phase (e.g. Duan et al., 1992b; Duan et al., 2006; Duan and Mao, 2006; Duan
and Sun, 2003; He and Morse, 1993) . Although quite accurate, such an approach is restricted to the
subcritical domain: at the critical point, properties of the liquid and the vapor phases converge, which
is not ensured if a different model is used for each phase. Moreover, using a model based on activity
coefficients for the liquid phase does not allow to calculate its density. A homogeneous
thermodynamic approach is thus needed to predict densities and phase equilibrium in both subcritical
and supercritical conditions: this means that the same equation of state should be used to model both
liquid and vapor phases. The availability of equations of state able to treat electrolytic systems in very
high temperature and pressure ranges is very limited in the literature. Soreide and Whitson (Soreide
and Whitson, 1992) have proposed a model based on the Peng-Robinson equation of state. The
attractive term of water in the liquid phase is corrected to take into account the salinity of the solution,
while the attractive term of water in the vapor phase remains unchanged. Thus, this model behaves
similarly as with a heterogeneous approach (different binary parameters for each phase), making
critical point calculations impossible. Sorensen et al.(Sorensen et al., 2002) have proposed to model
gas solubility in brines using the Soave-Redlich-Kwong equation of state coupled with the Huron-
Vidal mixing rules. However, this approach has been tested only in subcritical domain, and is not
suitable to calculate accurately liquid phase densities. More recently, Ji et al. (Ji et al., 2005) have
modeled the CO,+H,0+NaCl system using an electrolyte version of the SAFT equation of state. This
model appears accurate to predict both phase densities and phase equilibrium, but it is restricted in
temperature (473 K) and pressure (60 MPa) and does not cover the supercritical domain. For many
years, Duan’s group has developed specific equations of states which are today widely used for
geochemical applications. These models are often parameterized to reproduce either phase equilibrium
(e.g. Duan et al., 1992a; Duan et al., 2003) or volumetric properties (e.g. Duan et al., 1996; Hu et al.,
2007; Mao et al., 2010) with very good accuracy. Many empirical interaction parameters (binary,
ternary and quaternary parameters) have to be adjusted, requiring thus a large number of experimental
data. Although very accurate, such models are not fairly predictive.

In this work, we propose another model to represent simultaneously phase equilibrium and
volumetric properties of geological fluids (including electrolytes) for high temperature and high
pressure applications: the electrolyte Cubic Plus Association equation of state (eCPA). Initially
developed for water + salts systems (Inchekel et al., 2008), this equation of state has been extended to
electrolytic systems involving methane but in a restricted temperature range (de Hemptinne et al.,
2006). In this work we propose an extension of this model to the system CHy + CO; + H,0 + NaCl for
a wide range of temperatures (up to 773 K) and pressures (up to 200 MPa). Our goal is not to reach a
very high accuracy for phase equilibrium and volumetric properties, but rather to develop a semi-



predictive approach to model this system while allowing an easy extension to other compounds. This
is achieved using an equation that is now widely accepted, has semi-theoretical foundations
(Kontogeorgis, 2006), and has a small number of empirical parameters. Doing so, phase densities, gas
solubility, critical points and salting out effect are correctly estimated.

This paper is organized as follows: the eCPA model is detailed in section 2 with a description of
the various contributions to the total Helmholtz free energy. In section 3 we present the parameters
that are used to model pure component properties (excluding salt). Section 4 is devoted to the H,O +
NaCl system: the parameters used to represent properties (up to 7 molal NaCl) are presented together
with the deviations between experimental data and representation from the model. The selected
physical properties are vapor pressure, molar volumes at and out of saturation, NaCl mean activity
coefficient and osmotic coefficient. Section 5 treats the modeling of the binary salt-free systems
CH,+CO,, CH;+H,0 and CO,+H,0, with a focus on the description of the critical point. Finally, the
modeling of the full system with CH, + CO, + H,O + NaCl is presented in section 6.

2. Model

Modeling phase equilibrium of the CH, + CO, + H,0 + NaCl system is quite complex due to
the combination of different types of components such as water, gas as well as ionic species. The CHy
+ CO, binary system does not exhibit strong non ideality and is satisfactorily represented using a
conventional cubic equation of state such as Soave-Redlich Kwong (SRK) (Soave, 1972). Yet, the
hydrogen bonds result in a strong organization of water molecules. This supplementary degree of
complexity can be obtained with the Cubic Plus Association model (CPA) proposed by Kontogeorgis
et al.(Kontogeorgis et al., 1996). Finally, NaCl dissociates when dissolved in water to form ions and
electrostatic interactions are added to this complex system. The electrolyte Cubic Plus Association, as
proposed by Inchekel et al. (eCPA) (Inchekel et al., 2008) uses two electrolyte terms and its residual
Helmholtz free energy can be written as a combination of different contributions:

Ares - ASRK + Aa.s:mc + ( AMSA + ABorn) (1)
ASRK

is relative to Van de Waals interactions (attraction, repulsion) and is based on the work of
Soave (Soave, 1972). It is expressed as:

PES Z mn;d;
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Where n stands for the number of mole, R is the ideal gas constant, T is the absolute
temperature, ¥ the volume, a the attractive parameter and b the covolume.

The attractive parameter (a;) between species i and j is obtained from a classical mixing rule:

Ay =444, (1”1‘70') &

Where a; stands for the attractive parameter for the pure compound 7, and k; (by default set to
zero) allows to empirically tune interactions between species.

The Soave alpha function (Soave, 1972) is used to represent the temperature dependency of the
attractive parameter for non-ionic species:
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T is in K and the specific parameters to each species used in this term (a.; m; and T;) are
presented in the Table 1, together with b; of the equation (2).

For ions a similar formalism is used, but as their critical temperature is not clearly defined, it is
substituted by the reference temperature of 298.15 K, because most data are available at that
temperature. The attractive parameter for ionic species is therefore written as:

a,(T) = ay, {l+mi -(1—,/%98'1 5”2 )

In order to limit the number of parameters of the model, the repulsive term for the ions is
obtained from the ionic diameter (07,”“), which will be used for electrolyte terms of the equation of
state, as:

\3
5 Nm,ﬁ(a,f’;‘,) ©
6
Where N, is Avogadro’s constant.

The term A™ in equation (1) accounts for association phenomena between species and
especially for hydrogen bonds formation. It originates from Wertheim’s theory (Wertheim, 1984). It
can be expressed as:

AUSA'()C 3 A7 ”l A' _];-
= —Zni;(ln()( ) 2X +2) )

X* describes the non-bonded fraction of associating sites of type 4 of the compound i and is
obtained by solving :

X4 = ! (8)
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Where pis the molar density and x; the molar fraction of the compound j. The association

strength (AA"B‘ )} between two sites is calculated as follows:

A* = g(p)lexp(e™” I RT) -1, *" 9)
In this equation, g(p) is the simplified radial distribution function and is obtained from :
1

g(p)=—— (10)
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With:
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&" and B™7 are interaction parameters between associating sites. They are determined from

pure compound parameters using the so-called ‘CR1’ combining rule (Derawi, 2002):
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An important parameter for the calculation of this energy is the number and the type of
associating sites for each compound. In this work, a 4C association scheme is adopted for water,
according to the nomenclature of Huang and Radosz (Huang and Radosz, 1990). It means that a
molecule of water has two electronegative sites and two electropositive sites. The CO, molecule is
modeled with a single electronegative site. It means that a CO, molecule cannot be associated with
another CO, molecule, but only with an electropositive site of water, thus mimicking the formation of
carbonates.

(13)

Electrostatic interactions (ionic species) are considered with the A" term from the Mean
Spherical Approximation (MSA) approach detailed by Blum (Blum, 1975; Blum, 1977) from the
expression of Ball et al.(Ball et al., 1985):

A" N,e 3 nZ:T . vre (15)
RT 4xD,DRT % 1+Fo*,],”,’,.s" 37N,
The screening length (I') is obtained by solving iteratively:
N, e’ n, Z?
4r2 - av i ! (16)
D,DRT Z Vv [1+Fo—ﬁs” J
D is the solution relative dielectric constant, D, is the vacuum permittivity (8.855.10" F.m™); e

is the elementary charge (1.602. 10" C); Z; is the valence of ion i and o*l’,‘f” is the diameter of ion i.

The relative dielectric constant of the solution (D) is obtained from the value of pure water (D;)
using the Schmidt correlation (Schmidt and Grigull, 1982), coupled to Simonin’s model (Simonin,
1997) to account for salinity. The Schmidt correlation is the following:

D =1+ (-7-%2-5—7—1-) o+ [—2—%9—0—3——140.569 +27.7841T° ) P’

a7
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T T T
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Where 1T = (T in K) and p =— with v,: molar volume of pure water at
298.15 v

atmospheric pressure and 278.15 K (v,=18- 10" m*/mol) and v: molar volume of the solution.
The Simonin model is expressed as:

D (18)



As suggested by Inchekel et al. (Inchekel et al., 2008), the tunable parameter ¢, is set to 5.08
for the H,O + NaCl system. This value represents fairly well the decrease of the dielectric constant of
the system while salinity increases.

The difference of permittivity between the ideal gas reference state, assimilated to vacuum
permittivity, and the permittivity of the ionic solution is taken into account in the residual Helmoltz
energy calculation by the AP°™ term (Born, 1920) expressed as:

Born 2 2
A Nae (1——1—) e (19)
RT ~ 4zD,RT\_ D)% o

b,i

B . . . . .
o, is the diameter of the ion 7 and in order to reduce the number of parameters, we chose to

use:

hs _ _MSA __ __Bom __
Ub,i - Gb,i - O-b,i - Gb,i (20)

In this work, NaCl is assumed to be excluded from the vapor phase if two fluid phases coexist.
Similarly, we consider totally dissociated Na* and CI ions in the dense phase. So 1 mole of NaCl in
the system accounts for 2 moles of ions. Both of these assumptions are not entirely correct, especially
when the fluid approaches the critical point of water, but the resulting system description was
sufficient for our purpose.

3. Pure compounds properties

Parameters for pure components excluding ions (Na' and CI) are the ones proposed by
Kontogeorgis’s group (Kontogeorgis et al., 2008; Tsivintzelis et al., 2010; Tsivintzelis et al., 2011)
and can be found in Table 1. Only cross-associating volume of CO, (which has no effect on pure
component properties) has been adjusted in this work to obtain a better accuracy for phase equilibrium
of CO,+H,0 binary system specifically at high temperature.

Table 1. Pure component parameters used for eCPA equation of state. T is the critical temperature, a. the
attractive term at the critical point, b the covolume, i the parameter used in equation (4), £ the association
energy parameter, §the association volume parameter. In the association scheme, ed stands for electron
donor, ea for electron acceptor.

a. 3 ) number of Association 3 1
Te (k) (Pa.m®.mol™") b (m'.mol”) | m(-) associating site | _scheme &/R (K) | B (m".mol)
H,0 2ed-2ea
(Kontogeorgis | 647.35 0.122735 0.0000145 0.67359 4 (4C) 2003.12 0.06920
et al., 2008)
CO,
(Tsivintzelis | 304.19 0.350790 0.0000272 0.76020 1 Oed-lea 1412.59 0.01313*
etal., 2011)
CH,
(Tsivintzelis | 190.55 0.232040 0.0000291 0.44718 0 - - -
et al., 2010)

*: the association volume of CO, was adapted compared to the original (Tsivintzelis et al., 2011).




Properties of pure components at saturation (vapor pressure and liquid molar volume) have been
compared to the DIPPR correlations (Rowley et al., 2011), while densities out of saturation are
confronted to representation from the REFPROP software (Lemmon, 2006).

Deviations are presented as Average Absolute Deviation (AAD), defined as:

F;al - F:zxp
21
7 I 3y

exp

AAD(%) = 10 . >

data Niua

Where N, is the number of data, F a physical property such as pressure, molar volume, phase
composition, osmotic coefficient or mean activity coefficient, which is either calculated from the
l model (cal), or originating from experimental data (exp).

The Table 2 shows AAD for vapor pressures, saturated liquid molar volumes and molar volumes out
‘ of saturation for pure H,O, CO, and CH,.

Table 2. AAD (%) for pure compound properties

v Saturated liquid molar | Out of saturation molar
apor pressure
volumes volumes
H,0 0,9 1,8 2,0
CO, 0,6 1,5 3,7
CH, 1,2 2,8 2,5

For each compound, vapor pressures are very well represented from triple point to critical point
with an AAD lower than 1.2% and the highest deviations are lower than 3 %. Liquid molar volumes at
saturation are fairly well represented with an AAD lower than 3 %. The highest deviations are focused
in the vicinity of critical points, with deviations as high as 15 % for water. Representation of densities
out of saturation with eCPA model agrees well with the representations from REFPROP software for
each component from 373 K to 773 K and from 10 to 250 MPa. AAD are lower than 4 % for the three
components. Deviations for methane are homogeneous in the investigated conditions, even if it
increases with pressure. A similar behavior is observed with carbon dioxide, with higher degradation
of the representation at very high pressures. Water densities out of saturation are generally well
represented for the entire range of temperature and pressure studied and the highest deviations are
found from its critical point to 773 K and 50 MPa with deviations about 10 %.

4. H20 + Na(l system

As NaCl is the only salt studied in this work, it has been chosen to use the same values of
attractive parameters (equation 5) for both ions Na” and CI to represent the physical properties of salt
water. The pure ion parameters have been adjusted on salt water vapor pressures, saturated and out of
saturation molar volumes, NaCl average activity coefficients and water osmotic coefficients, for
molalities up to 7. The optimized parameters are given in Table 3.

The segment diameter parameter accounts for electrolytic contributions as well as repulsion
forces, and differs for Na* and CI.



Table 3. Parameters for ions used for eCPA equation of state. o, is the solvated diameter of the ion
(equation (20)), and a, and m, the parameters of equation (5).

o (A) g (To =298 K) (Pa.m6.mol'2) m;
Na" | 1.6
Cr 4.3

1.162 -0.987

Table 4 shows the AAD obtained using this parameterization for various properties of the H,O
+ NaCl system, as well as the number of experimental data, the temperature range and the maximal
salinity of the experimental data used for the regression.

Table 4. AAD (%) for H,O + NaCl properties.



AAD %

n data

Temperature
range

Salinity max.

{molality)

Ref.

Saturated
vapor
pressure

2.1

1094

[298 ;673 K]

7.8

(Apelblat and Korin, 1998;berling et al.,
1999;Bischoff and Rosenbauer, 1988;Crovetto and
'Wood, 1991:Filiz and Giilen, 2008;Galobardes et al.,
1981;Gardner et al., 1963;Hakuta et al., 1975;Hubert
et al., 1995;Jablczynski, 1922;Jablczynski and Kon,

1923;Johnston, 1907;Kahlenberg, 1900;Khaibullin
and Borisov, 1966;Kiepe, 2002;Kovyrzina et al.,

1966;Kuramochi et al., 1997;Lannung,
1934;1egrand, 1836;Leopold and Johnston,
1927:Markowitz and Boryta, 1961;Mashovets et al.,
1973;Mokbel et al., 1997;Parisod and Plattner,

1981;Smith et al., 1954;Sourirajan and Kennedy,
1962;Tammann, 1888, Urusova and Ravich, 1971)

Molar
volume at
saturation

4.6

1238

[273 ; 713 K]

57

(Apelblat and Manzurola, 1999;Elis and Golding,
1963;Fabuss et al., 1966;Khaibullin and Borisov,
1966;Kiepe et al., 2003a;Korosi and Fabuss,
1968;Patel and Kishore, 1995;Potter and Brown,
1977;Rodnyanskii and Galinker, 1955;Rogers and
Pitzer, 1982:Shreiber and Tikhii, 1973)

Molar
volume out
of saturation|

4.0

5947

[273 ;773 K]

5.7

(Ellis, 1966;Gehrig et al., 1983;Gorbatchev et al,,
1974;Grant-Taylor, 1981;Hilbert, 1979;Potter and
Brown, 1977;Rogers and Pitzer, 1982;Zarembo and
Fedorov, 1975)

NaCl mean
ionic
activity
coefficient

3.0

1021

[298 ;573 K]

6.7

(Akerloef, 1930;Brown and MaclInnes,
1935;Downes, 1970;Esteso et al., 1989;Gibbard et
al., 1974;Glazkova et al., 1997, Hamer and Wu,
1972;Harned and Cook, 1939;Hemandez-Hernandez
et al., 2007;Hernandez-Luis et al., 1995;Hernandez-
Luis et al., 2004;Hernandez-Luis et al.,
2009;Hernandez-Luis et al., 2010;Janz and Gordon,
1943;Ji et al., 2001 ;Khoshkbarchi and Vera,
1996;Lanier, 1965;Lebed and Aleksandrov,
1964;Morales et al., 2009;Pearce and Nelson,
1932;Platford, 1968;Rabie et al., 1999;Robinson and
Stokes, 1949:Robinson and Sinclair, 1934;Safona et
al., 1986:Schindler and Waelti, 1968;Schneider et
al., 2003;Stokes and Levien, 1946;Vliasov,
1963;Wang et al., 1994;Wilczek-Veraet al.,
2006;Yan et al., 1994;Yao et al., 1999;Zhuo et al.,
2008)

H,O
osmotic
coefficient

2.5

752

[298 ; 573 K]

10.2

(Amado and Blanco, 2004;Apelblat and Korin,
1998:Baabor et al., 1994;Blanco et al., 2008;Boyd,
1977:Burge, 1963;Downes, 1973;Downes and
Pitzer, 1976;Filippov et al., 1986;Gibbard et al.,
1974;Guendouzi et al., 2001;Hamer and Wu,
1972;Janz and Gordon, 1943;Koennecke et al.,
1997;Liu and Lindsay, Jr., 1972;Miljevic et al.,
1981;Nasirzadeh et al., 2004;Partanen and
Minkkinen, 1993;Rard and Archer, 1995;Robinson
and Stokes, 1949;Salabat et al., 2005;Scatchard et
al., 1938;Smith, 1939;Stokes and Levien,
1946;Vliasov, 1963;Wigent and Leifer, 1984;Wu et

al., 1969;Yin et al., 2007)

Experimental vapor pressures are reproduced with an AAD of 2.7 % for temperatures up to 673
K and NaCl salinity up to 7.8 molal. Evolutions with temperature of the ratios of brine saturation
vapor pressure over pure water vapor pressure are illustrated in Figure 1 for different salinities. The
top first dotted line shows the deviation between pure water vapor pressure predicted by eCPA model
and the representation from the DIPPR correlation (Rowley et al., 2011) up to the water critical point.
Thereafter the decrease of vapor pressure while increasing salinity shown by the experimental data is
well represented by the model particularly at moderate temperatures.
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Figure 1. Influence with temperature of salinity on the brine vapor pressures compared to pure water
vapor pressure estimated by the DIPPR reference correlation (Rowley et al., 2011). NaCl molalities: 0.7

(Ih; 1.9 ($); 3.4 (A) and 4.9 (O). Symbols are experimental data. Lines are the model representations.

Experimental molar volumes at and out of saturation up to 5.7 molal of NaCl are represented
respectively with an AAD of 4.6 % for temperatures up to 713 K and of 4.0 % for temperatures and
pressures up to 773 K and 400 MPa. Generally, molar volumes are worst represented at temperatures
higher than water critical temperature together with pressures below 100 MPa.

Experimental water osmotic coefficients are represented with an AAD of 2.5 % for NaCl
salinity up to 10 molal and temperatures as high as 573 K. Experimental determination of NaCl mean
ionic activity coefficients are also available up to 573 K for NaCl salinity up to 6.7 molal. These last
data are represented with an AAD of 3 % and are illustrated in Figure 2. Both salinity and temperature
effects are quite well represented by the eCPA model.
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Figure 2. Evolution with NaCl molality of the NaCl mean ionic activity coefficient at 298 K (<); 373 K
(); 473 K (O) and 573 K (A). Symbols are the experimental data. Lines are the model.

5. CHs + CO2, CH4 + H20 and CO:z + H20 systems

The system CH, + CO, is modeled using a binary interaction parameter (k; in equation (3)) equal
to 0.0882. This value is directly taken from literature (Tsivintzelis et al., 2011) and, as shown by these
authors, this parameter allows a good reproduction of phase equilibrium and densities of this system.

The systems CH; + H,O and CO, + H,O are particularly difficult to model at high temperature and

pressure due to the presence of one (liquid-vapor) or even two (liquid-vapor and liquid-liquid) critical
points, as illustrated on Figure 3 and Figure 4.

11
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Figure 3. Locations of critical points in the CO, + H,O system. Symbols are the experimental critical
points (filled circles: Takenouchi et al. (Takenouchi and Kennedy, 1964); open triangles: Todheide et al.
(Todheide and Franck, 1963)). The dotted line is a guide for the eyes. The hachured area stands for the
liquid-liquid domain.
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Figure 4. Locations of critical points in the CH,4 + H,O system. Symbols are the experimental critical
points (filled diamonds: Sultanov et al.(Sultanov et al., 1971;Sultanov, 1972); open squares: Welsch
(Welsch, 1973)). The dotted line is a guide for the eyes. The hatched area stands for the liquid-liquid
domain.
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For the CH4 + H,O system, the liquid-vapor critical points appear for a temperature and pressure
of 626 K and 97.3 MPa, and finish at the critical point of pure water (647 K, 22.06 MPa). Below the
temperature of 626 K, the system exhibits a two-fluid phase equilibrium without critical point. The
experimental data of Welsch (Welsch, 1973) also exhibit the existence of liquid-liquid critical points
for temperatures and pressures above 626 K and 100 MPa. A liquid-liquid phase equilibrium domain
is thus determined for temperatures and pressures above the liquid-liquid critical point line. The
system is single phase for temperatures and pressures between the liquid-liquid critical point line and
the liquid-vapor critical point line. The CO, + H,O system behaves similarly. It can however be
noticed that the liquid-liquid critical point line appears for higher pressures (above 250 MPa), and the
minimal temperature for which a liquid-vapor critical point exists is close to 538 K. For both systems,
only a very limited number of experimental data are available for the high pressure liquid-liquid
equilibrium and the location of the liquid-liquid critical points. Consequently, we only focus in this
work on the modeling of the liquid-vapor phase equilibrium.

Without binary interaction parameters, large deviations are often observed in phase equilibrium
predictions for the binary systems with H,O. More specifically, critical points are not correctly
predicted. Thus, binary interaction parameters are required to better represent the experimental liquid-
vapor phase equilibrium data of the binary systems CH; + H,O and CO, + H,O. These parameters
have been fitted to (1) reproduce the gas solubility in the aqueous phase and (2) to represent the phase
envelope closure at the appearance of the mixture critical point. Note that for these systems, no
volumetric data have been used in the parameter regression. The phase densities given by the model
are thus obtained in pure prediction. We also recall that the liquid-liquid domain is not considered in
this work. The number of experimental gas solubility data and the temperature and pressure range used
to fit the binary interaction parameters are given in Table 5. The temperature and pressure ranges are
taken as large as possible to ensure a good extrapolation of the model. However, experimental data at
high temperature / high pressure are pondered with a more important weight, as we focus in this work
more specifically on these specific conditions.

Table 5. Experimental gas solubility data used for binary interaction parameter regression.

Temperature Salinity
System n data range Pressure range max. Ref,
{molality)

(Addicks et al., 2002;Carroli,
1998;Chapoy et al.,
2003;Chapoy et al.,

2004b;Culberson,

1951;Culberson and McKetta,
1950;Davis and McKetta,
1960;Dhima, 1998;Duffy et al.,
1961;Folas et al., 2007;Gillespie
CH, + H,O 1061 [253 ;623 K] | [0.1;250 MPa] - and Wilson, 1982;Kiepe et al.,
2003b;Kim et al., 2003;Lekvam
and Bishnoi, 1997;Michels et al.,
1936;01ds et al., 1942;Rigby
and Prausnitz, 1968;Sanchez and
de Meer, 1978;Sharma,
1969;Siqueira Campos et al.,
2010;Sultanov et al.,
1971;Sultanov,
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1972;Tabasinejad et al.,
2011;Ugrozov, 1996;Wang et
al., 1995;Yang et al.,
2001;Yarim-Agaev et al.,
1985; Yarrison et al.,
2006;Yokoyama et al., 1988)

CO, + H,O

1723

[253 ;643 K]

[0.1 ;350 MPa]

(Addicks et al., 2002;Carroll,
1998;Chapoy et al.,
2003;Chapoy et al.,
2004b;Culberson,

1951;Culberson and McKetta,
1950;Kiepe,  2002;Takenouchi
and Kennedy, 1964;Todheide
and Franck, 1963)(Ai et al,
20035;Anderson,

2002;Bamberger et al.,

2000;Bando et al.,
2003;Bermejo et al.,
2005;Briones et al.,
1987;Chapoy et al.,
2004a;Crovetto and  Wood,
1992;D'souza et al.,

1988;Dalmolin et al.,
2006;Davis and  McKetta,
1960;Dell'Era et al.,
2010;Dhima, 1998;Dhima et al.,
1999;Dohm et al., 1993;Duffy et
al., 1961;Fenghour et al,
1996;Ferrentino et al.,
2010;Folas et al., 2007;Fonseca
et al, 2007;Gillespiec and
Wilson, 1982;Gu, 1998;Gui et
al., 2010;wai et al.,
2004;Jackson et al., 1995;Jarne
et al, 2004;King et al,
1992;Koschel et al., 2006;Li et
al,, 2004;Malegaonkar et al.,
1997;Marshall et al,,
1958;Martin et al., 2009;Mather
and Franck, 1992;:Morgan and
Maass, 1931;Mueller et al,
1988;Nakayama et al.,
1987;Nighswander et al,
1989;Novak et al., 1961 Patel et
al., 1987;Pohorecki and
Mozenski, 1995;Prutton,
1945:Qin et al, 2008:Ruffine
and Trusler, 2010;Rumpf et al.,
1994;Sako et al, 1991:Servio
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and Englezos,
2001;Silkenbaumer et al,
1998:Siqueira Campos et al,
2010;Stewart and  Munjal,

1970)(Valtz et al,,
2004;Verbrugge, 1979;Vilcu and
Gainar, 1967; Wiebe,

1939;Wiebe and Gaddy,
1940;Zaalishvili, 1940;Zawisza

and Malesinska,
1981;Zel'vinskii, 1937;Zheng et
al., 1997)

(Blount, 1980;Cramer,
CH, +H,O +NaCl | 599 [273:573K] | [10; 150 MPa] 6 1982;McGee et al.,

1981;0'Sullivan, 1970)

(Bando et al., 2003;Ferrentino et
al., 2010;Gu, 1998;Kiepe,
2002;Koschel et al., 2006;Li and
Tsui, 1971;Malinin and
CO, + H,O + NaCl 509 [277 ;723 K] [1; 140 MPa] 6 Kurovskaya, 1975;Malinin and
Savelyeva, 1972;Nighswander et
al., 1989;Rumpfet al.,
1994;Takenouchi and Kennedy,
1965)

In a first step, the binary interaction parameter is fitted individually for each temperature. That
allows to plot its trend with temperature, as shown on Figure 5 and Figure 6 for the systems CHy +
H,0 and CO, + H,0, respectively.

k;; (CH,+H,0)
o o O
o N b

o
N

o
FaN

f l i 1

270 370 470 570 670
T(K)

Figure 5. Binary interaction parameters for the CH, + H,O system. Symbols: optimized values for each

temperatures. Line: fit of the optimized values (equation (22)).
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Figure 6. Binary interaction parameters for the CO, + H,0 system. Symbols: optimized values for each
temperatures. Line: fit of the optimized values (equation (22)).

The optimized binary parameters for the CH, + H,0 system exhibit a parabolic trend. This is
why in a second step, a second order temperature dependency is proposed for this parameter:

by (T)=ky +k;-T+k;- T (22)

Where T is the temperature in K. The parameters K

i

k;, and k; are given in Table 6.

The optimized parameters for the CO, + H,0 system show two distinct trends: below 537 K
(temperature for which the critical point appears), moderate values are obtained (between 0 and 0.2),
and they are fitted with a second-order temperature dependency. For temperature above 537 K, the
values of k; drastically decrease, and become largely negative (up to -0.8). Such very high negative
values for this parameter is a consequence of the strong attraction of water and CO; in this temperature
range where critical points are present. The optimized & are fitted in this domain with a first-order
temperature dependency. The same approach is followed for the other binary systems investigated.
Table 6 shows the parameters determined for equation (22) for each system. These binary interaction
parameters are found to be a good compromise to reproduce simultaneously gas solubility in water,
critical point appearance, and phase density.

Table 6. Binary interaction parameters for the eCPA model

VLE data range 0 1 2
System ) k, k; k;
CH, + CO,
(Tsivintzelis et al., 219 -301 0.08820 0 0
2011)
CH, + H,0 283 - 663 -2.18100 0.01111 -1.27902-107
323 - 537 -9.12960°10" |  5.40410°10° | -6.49667-10°°
CO, + H,0 3
537-623 5.39448 -9.82899-10° -
CH4 + [Na+ and Cl-] 286 - 563 1.47532 -7.33268:10° -
CO2 + [Na+ and Cl-] 298 - 673 0.40050 224613107 | -1.40671-10°




Figure 7 presents experimental and calculated pressure-composition diagrams for CHy + H,O
binary system from 373 to 633 K. Trends shown by the liquid-vapor equilibrium data are fairly well
reproduced by the model in the entire range of temperature, even if the critical pressure of the mixture
is slightly over predicted as well as methane solubility. Molar volumes are generally well represented
for this system and only conditions in the continuity of pure water critical coordinates are also not well
represented, viz. for temperatures close and above pure water critical temperature for high H,O
content.

250

200

150

100

Pressure (MPa)

50

Fogim B, B I S,

e

Xchas Yenus (Molar fraction)

Figure 7. VLE for CH, (1) + H,O (2) binary system at 373 K (A), 473 K ({), 573 K (O), 603 K (%), 625 K
(<) and 633 K (/). Empty symbols refer to experimental vapor phase composition (y¢y,) while full
symbols refer to experimental liquid phase composition (xcy,). Lines are the model representations.

Experimental and calculated liquid-vapor equilibrium for the CO, + H,O binary system are
shown in Figure 8 between 373 and 623 K. Even if increasing the cross-association strength between
CO, and H,O (using a larger association volume for CO,) has improved the VLE representation for the
binary system, it is still not sufficient to well reproduce both liquid and vapor composition at high
temperature. As a consequence, CO, liquid phase composition is well reproduced, but CO, vapor
phase compositions are over predicted by the model at 473 and 533 K. It is worth noticing that
experimental data for vapor phase composition are very scarce in literature at high temperature. More
specifically at 533 K, two experimental data sets are available (Takenouchi and Kennedy, 1964,
Todheide and Franck, 1963) but are not really consistent. The acquisition of new experimental data
would be useful for modeling this system in such extreme conditions. Although not included in the
regression parameter database, molar volumes are generally well represented for this system but in the
same way as observed with CH, + H,O system, the model fails to reproduce accurately molar volumes
particularly at temperatures close and above water critical temperature for high H,O content.
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Figure 8. VLE for CO, (1) + H,O (2) binary system at 373 K (%), 473 K (0), 533 K (<), 548 K () and
623 K (A). Empty symbols refer to experimental vapor phase composition (ycg,) while full symbols refer
to experimental liquid phase composition (xcp;). Lines are the model representations.

Table 7 presents deviations between experimental data and model description for liquid-vapor
phase equilibrium (liquid and vapor phase composition) and molar volumes (¥,,) out of saturation for
the binary systems studied.

Table 7. AAD (%) between experimental data and model description using eCPA equation of state for
liquid-vapor equilibrium (VLE) and molar volumes for binary systems.

System x; (AAD %) v (AAD %) V.. (AAD %)
CH, (1) +CO, (2) 6 9 1.7
(Tsivintzelis et al., 2011) )
CH, (1) + H,O (2) (this work) 16 8 2.6
CO, (1) + H,0 (2) (this work) 26 12 2.8

The CPA-family equation of state has already proved its ability to be extended to multi-
component systems from parameterizations carried out on binary systems only. As an example for this
application, co-solubility data of Qin et al. (Qin et al., 2008) for the ternary system CH, + CO; + H,0
at 375 K are correctly represented using only the binary interaction parameters of Table 6. Deviations
on vapor pressures and vapor phase composition between experiments and model predictions are
reported in Table 8 and shown in Figure 9. The highest deviations are found to predict water molar
fraction in the vapor phase where experimental values are very low (about 0.02). It can be concluded
here that the VLE behavior is well predicted by the eCPA model, showing its ability to be extended to
multi-component mixtures with only binary interaction parameters.
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Table 8. AAD (%) between prediction using eCPA equation of state and experimental data for vapor
pressure and vapor phase composition in the CH, + CO, + H,O ternary system at 375 K.

Vapor pressure VCH4 Yco2 Y20
5.6% 2.9% 3.0% 35.1%
0.8
=
L
s 0.6
o
3
)
E 04 -
o
(4]
k]
K
£ 0.2
=y
0 i T T T
0 0.2 0.4 0.6 0.8
yi measured (molar fraction)

Figure 9. Comparison between experimental and predicted vapor phase composition for the CH, + CO, +
H,0 ternary system at 375 K. yeus ()5 Yeoz ($); and ymo (O).

6. CHs + H20 + NaCl and COz + H20 + NaCl systems

The addition of electrolytes in an aqueous solution is known to reduce the gas solubility (“salting-
out” effect). A consequence is the disappearance or the displacement of the mixture critical point to
higher temperature and pressure than for a salt-free solution. In order to reproduce such a behavior, it
is necessary to introduce in the model binary interaction parameter between the light gas molecule
(CH, or CO,) and the ions (Na and CI'). These parameters have been fitted in this work to reproduce
the gas solubility for a large range of temperatures, pressures and salinities. No volumetric data have
been included in the parameter regression database. The phase densities of these systems are thus
obtained in pure prediction. The gas solubility experimental data and conditions used for this
optimization are given in Table 5. The optimized parameters are reported in Table 6.

As illustrated on Figure 10, the salting out effect observed for the CH; + (H;O + NaCl) pseudo-
binary system is correctly predicted by the eCPA model. This figure compares experimental and
calculated CH, solubility at 408 K for NaCl salinity ranging from 0 to 5.6 molal. Although at this
temperature methane solubility is very low, the model reproduces correctly experiments with and
without NaCl for salinities up to about 5 molal. It is worth noticing that no vapor composition data has
been found in literature to validate the model predictions. Furthermore, only few density (molar
volumes) experimental data have been found for this system. They have all been generated at 800 K
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for pressures ranging from 10 to 250 MPa and NaCl salinity between 0.6 and 1.3 molal. At such high
temperature, the average deviations are ranging from 10 % at 250 MPa to 50 % at 100 MPa.

150 A
T e /!

£ 100 2 7
= FiN At 2../’\
g -
=
[/}
§ )
o

50 -

0 R T T T T T
0 0.001 0.002 0.003 0.004 0.005 0.006
Xcn4 (Molar fraction)

Figure 10. Solubility for CH, (1) + (H,O + Na® + CI") (2) pseudo-binary system at 408 K for NaCl molality

0.00 (@); 0.86 (); 1.8 ([0); 2.9 (O); 4.2 (%) et 5.6 (). Symbols are experimental data. Lines are the
model representations.

Representations of experimental and calculated phase equilibrium for CO, + (H,O + NaCl)
pseudo-binary system are shown in Figure 11 at 573 K for 0 to 3.4 NaCl molality. The salting out
effect illustrated by available experimental data is fairly well reproduced here by the model for NaCl
salinities up to 5 molal. Again, no experimental data for vapor phase composition is available in
literature. The acquisition of new experimental data would be useful for studying this system in such
extreme conditions. Molar volumes are predicted with an average deviation of 28 % for temperatures

ranging from 300 to 793 K. The highest deviations (above 40 %) are observed for pressures close to
50 MPa and for temperatures above 573 K.
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Figure 11. VLE for CO, (1) + (H,0 + Na’ + CI') (2) pseudo-binary system at 573 K for NaCl molality 0.00
(®) and 3.4 (<).For the system excluding salt, empty symbols refer to experimental vapor phase
composition (y¢gpz) while full symbols refer to experimental liquid phase composition (xcp;). Lines are the
model representations.

Finally, Table 9 gives the average deviations obtained for the vapor pressure and molar liquid
volumes for these salted systems.

Table 9. AAD (%) between experimental data and model description using eCPA equation of state for
liquid-vapor equilibrium (VLE) and molar volumes for CH,+H,0+Na"+CI and CO,+H,0+Na™+CI

systems.

System Pt (AAD %) Vi (AAD %)
CH4 + (H,0 +Na” + CI) 33 33
CO, + (H,O +Na' + CI) 32 28

7. Conclusions

An electrolyte version of the Cubic Plus Association (¢€CPA) equation of state has been adapted
to systems containing CHy, CO,, H,O and NaCl (up to 5 molal) at temperatures and pressures up to
773 K and 200 MPa. Its purpose is to represent the phase behavior (including salting-out effect and
critical points) and the densities of phases in a range of temperature and pressure encountered in deep
reservoir and basins. The goal of the parameterization proposed is not to reach very high accuracy for
phase equilibrium and volumetric properties, but rather to develop a semi-predictive approach to
model this system while allowing an easy extension to other compounds.
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Among the parameters of the pure molecular species only the cross associating volume of CO,
has been modified from the literature values, to better represent the high temperatures phase
equilibrium of the CO, + H,O binary system. Parameters of the pure ions (Na* and CI’) have been
adjusted to represent vapor pressures and mean ionic activity coefficients of brine. Finally, binary
interaction parameters between each gas (CO, and CH,) with H,O and ions have been fitted to
represent phase equilibrium with a special focus on critical phase envelope closure and salting out
effects.

Without salt, predictions for pure component saturation vapor pressures and liquid molar
volumes present an average absolute deviation (AAD) lower than 3 % compared to experimental
reference values. The pure component molar volumes out of saturation show an AAD lower than 4 %.
The highest deviations in densities are observed in the vicinity of the critical coordinates of pure water
and this effect increases when gases or salts are added to the system. For each binary system, CH, +
CO,, CH4 + H,0 and CO; + H,0, binary interaction parameters have been fitted to correctly predict
the shape of the fluid phase envelopes (including liquid-vapor critical points) in the entire temperature
and pressure range considered (219 K to 633 K and up to 250 MPa). The methane concentration in
both phases of the CHy + CO, binary system is represented with an AAD lower than 9 %. The
methane solubility in water is represented within 16 % and 8 % for the methane content of the vapor.
The CO, solubility in water is within 26 %, while the CO, in the vapor phase shows an average
deviation of 12 %. All molar volumes are represented with an AAD lower than 3 %. The few VLE
data which were found for the CH; + CO, + H,O ternary system are fairly well predicted with the
model without extra parameter and comfort the ability of the eCPA equation of state to be extended to
multi-component systems. In the presence of salts, gas + ion binary interaction parameter have been
fitted, and all phase equilibrium are qualitatively correctly described, and more specifically the salting
out effect. The solubility of methane or CO, in brines, up to 5 molal, is represented with an AAD of
33 % in a large temperature and pressure range (up to 673 K and 150 MPa). It should be noticed that
for high temperatures, experimental data are relatively scarce and not always consistent. No data exist
for water content of the vapor phase in these conditions.

The new eCPA model can be easily extended to other components including also others ions to
better represent real fluid behavior in very deep reservoir conditions.
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List of symbols
a attractive term in SRK EoS (Pa.m®.mol ™)
AAD Average Absolute Deviation (%)
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DIPPR

VLE
Xj
X4

Yi

4B

ﬁif

AR

N

co-volume term in SRK EoS (m*.mol™)
Design Institute of Physical Property Data
solution dielectric constant

vacuum permittivity (F.m™h)

elementary charge (C)

electrolyte Cubic Plus Association

dummy variable used to present AAD equation
radial distribution function

binary interaction parameter

parameter used in the alpha function

Mean Spherical Approach

number of mole

number of data

Avogadro’s constant

ideal gas constant (J (mol.K)™")

Soave Redlich Kwong

absolute temperature (Kelvin)

molar volume (m*.mol™)

volume (m’)

Vapor Liquid Equilibrium

molar fraction of component i in liquid phase
Unbonded fraction of site A of the molecule /
molar fraction of component i in vapor phase

valence of ion i

Greek letters :

tunable parameter used in Simonin’s model

association volume between site A on molecule i and site B on molecule j (AY

association strength between site A on molecule i and site B on molecule j
(A%

association energy of interaction between site A on molecule 7 and site B on
molecule j, per molecule (J)

pi number

molar density of solution (mol.m™)
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Oy solvated diameter in eCPA EoS (&)

Subscripts:

0 standard property
A; site A of the molecule i
c critical
i applied to component i
J applied to component j
m molar
s solvent

Superscripts:
* reduced property
0,1,2 iterative values to differ parameters for k; evolution with temperature
+ positive charge

- negative charge

assoc association
hs hard sphere
res residual
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