Skip to Main content Skip to Navigation
New interface
Journal articles

Formation of Soft Nanoparticles via Polyelectrolyte Complexation: A Viscometric Study.

Abstract : This paper describes the formation of soft nanoparticles resulting from electrostatically driven complexation of oppositely charged polyelectrolytes. The system was composed of a strong polyanion (PolyStyrene Sulfonate, PSS) and a weak polycation (Poly(Allylamine) Hydrochloride, PAH) in large excess. Soft nanoparticles were obtained by pouring a PSS solution into a PAH one under constant stirring. The PolyElectrolyte Complexes (PEC) were characterized through a viscometric study complemented by Dynamic Light Scattering (DLS), electrophoretic mobility and suspension turbidity measurements. PEC suspensions were centrifuged and by measuring the viscosity of the supernatant, we were able to estimate the free polycation concentration and hence the percentage of complexed polycation. We also measured the relative viscosity of the suspensions; from the estimated contribution of the PEC particles and of the polycation in excess, the average particle volume fraction was estimated. From all viscometric data, we could derive the evolution of the binding stoichiometry in PEC and of the effective particle volume fraction as a function of the mixing ratio (ratio of the cationic to anionic groups) and of the pH. Our results emphasize the importance of charge accessibility in controlling both the stoichiometry and packing density of the complexes.
Complete list of metadata

Cited literature [33 references]  Display  Hide  Download
Contributor : Françoise Bertrand Connect in order to contact the contributor
Submitted on : Thursday, September 25, 2014 - 2:42:41 PM
Last modification on : Monday, March 28, 2022 - 11:26:04 AM
Long-term archiving on: : Friday, April 14, 2017 - 2:11:09 PM


Publisher files allowed on an open archive




Céline Rondon, Jean-François Argillier, Michel Moan, Fernando Leal Calderon. Formation of Soft Nanoparticles via Polyelectrolyte Complexation: A Viscometric Study.. Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, 2014, 69 (4), pp. 387-395. ⟨10.2516/ogst/2014015⟩. ⟨hal-01068345⟩



Record views


Files downloads