A. Saltelli and I. Sobol, About the use of rank transformation in sensitivity analysis of model output, Reliability Engineering & System Safety, vol.50, issue.3, pp.225-239, 1995.
DOI : 10.1016/0951-8320(95)00099-2

A. Saltelli and I. Sobol, A quantitative, model independent method for global sensitivity analysis of model output, Reliability Engineering and System Safety 41, pp.39-56, 1999.

A. Saltelli, K. Chan, and M. Scott, Sensitivity analysis, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00386559

I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling and Computational Experiments, vol.1, pp.407-414, 1993.

G. Blatman and B. Sudret, Efficient computation of global sensitivity indices using sparse polynomial chaos expansions, Reliability Engineering & System Safety, vol.95, issue.11, pp.1216-1229, 2010.
DOI : 10.1016/j.ress.2010.06.015

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Computational Statistics & Data Analysis, vol.52, issue.10, pp.4731-4744, 2008.
DOI : 10.1016/j.csda.2008.03.026

URL : https://hal.archives-ouvertes.fr/hal-00239492

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and Analysis of Computer Experiments, Statistical Science, vol.4, issue.4, pp.409-435, 1989.
DOI : 10.1214/ss/1177012413

T. J. Santner, B. J. Williams, and W. I. Notz, The design and analysis of computer experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

C. B. Storlie and J. C. Helton, Multiple predictor smoothing methods for sensitivity analysis: Description of techniques, Reliability Engineering & System Safety, vol.93, issue.1, pp.28-54, 2008.
DOI : 10.1016/j.ress.2006.10.012

C. B. Storlie and J. C. Helton, Multiple predictor smoothing methods for sensitivity analysis: Example results, Reliability Engineering & System Safety, vol.93, issue.1, pp.57-77, 2008.
DOI : 10.1016/j.ress.2006.10.013

C. B. Storlie, L. P. Swiler, J. C. Helton, and C. J. Sallaberry, Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliability Engineering and Systems Safety 94, pp.1735-1763, 2009.

S. Touzani and D. Busby, Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes, Reliability Engineering & System Safety, vol.112, pp.67-81, 2013.
DOI : 10.1016/j.ress.2012.11.008

URL : https://hal.archives-ouvertes.fr/hal-00616422

M. D. Morris, Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, vol.1, issue.2, pp.161-174, 1991.
DOI : 10.2307/1266468

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. M. Sobol and S. Kucherenko, Derivative based global sensitivity measures and their link with global sensitivity indices, Mathematics and Computers in Simulation, vol.79, issue.10, pp.3009-3017, 2009.
DOI : 10.1016/j.matcom.2009.01.023

I. M. Sobol and S. Kucherenko, A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices, Computer Physics Communications, vol.181, issue.7, pp.1212-1217, 2010.
DOI : 10.1016/j.cpc.2010.03.006

F. Campolongo, J. Cariboni, and A. Saltelli, An effective screening design for sensitivity analysis of large models, Environmental Modelling & Software, vol.22, issue.10, pp.1509-1518, 2007.
DOI : 10.1016/j.envsoft.2006.10.004

I. Sobol and A. Gresham, On an alternative global sensitivity estimators, Proceedings of SAMO 1995, pp.40-42, 1995.

S. Kucherenko, M. Rodriguez-fernandez, C. Pantelides, and N. Shah, Monte Carlo evaluation of derivative-based global sensitivity measures, Reliability Engineering & System Safety, vol.94, issue.7, pp.1135-1148, 2009.
DOI : 10.1016/j.ress.2008.05.006

M. Lamboni, B. Iooss, A. Popelin, and F. Gamboa, Derivative-based global sensitivity measures: General links with Sobol??? indices and numerical tests, Mathematics and Computers in Simulation, vol.87, pp.45-54, 2013.
DOI : 10.1016/j.matcom.2013.02.002

URL : https://hal.archives-ouvertes.fr/hal-00666473

I. M. Sobol, Uniformly distributed sequences with an additional uniform property, USSR Computational Mathematics and Mathematical Physics, vol.16, issue.5, pp.236-242, 1976.
DOI : 10.1016/0041-5553(76)90154-3

I. M. Sobol and S. Kucherenko, On quasi-Monte Carlo integrations, Mathematics and Computers in Simulation, vol.47, issue.2-5, pp.103-112, 1998.
DOI : 10.1016/S0378-4754(98)00096-2

M. D. Mckay, R. J. Beckman, and W. J. Conover, Conover . A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, pp.239-245, 1979.

F. J. Floris, M. D. Bush, M. Cuypers, F. Roggero, and A. R. Syversveen, Methods for quantifying the uncertainty of production forecasts-a comparative study (1996) Production forecasting with uncertainty quantification, Petroleum Geoscience, vol.7, 2001.

. Pumaflow, IFP Energies nouvelles reservoir simulator, URL http, 2011.

F. Anterion, R. Eymard, and B. Karcher, Use of Parameter Gradients for Reservoir History Matching, SPE Symposium on Reservoir Simulation, pp.6-8, 1989.
DOI : 10.2118/18433-MS

J. E. Killough, Y. Sharma, A. Dupuy, R. Bissell, and J. Wallis, A Multiple Right Hand Side Iterative Solver for History Matching, SPE Reservoir Simulation Symposium, pp.12-15, 1995.
DOI : 10.2118/29119-MS

D. Eydinov, S. Aanonsen, J. Haukas, and I. Aavatsmark, A method for automatic history matching of a compositional reservoir simulator with multipoint flux approximation, Computational Geosciences, vol.23, issue.4, pp.209-225, 2008.
DOI : 10.1007/s10596-007-9079-1

R. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophysical Journal International, vol.167, issue.2, pp.495-503, 2006.
DOI : 10.1111/j.1365-246X.2006.02978.x

R. Rao, B. Mishra, and S. , Adjoint sensitivity analysis for mathematical models of coupled nonlinear physical processes, ModelCARE 96, International Conference on Calibration and Reliability in Groundwater Modelling, pp.24-26, 1996.