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Résumé— Méthode de criblage baseé sur les indices de sensibilite´ DGSM : application au simula-
teur de réservoir— Les simulateurs d’écoulements en milieux poreux sont utiliseś pour effectuer
des prévisions de la production de gisements pet́roliers. Les modèles de réservoir étudiés sont
caractérisés par un grand nombre de propriétés qui sont souvent très incertaines. A�n de
construire des modèles prédictifs il est donc nécessaire de red́uire cette incertitude en se
focalisant sur les variables les plus in�uentes. Les met́hodes d’analyse de sensibilite´ permettent
de résoudre ce problème, mais sont souvent très coûteuses en nombre de simulations. A�n de
réduire le nombre d’appels au simulateur des nouveaux indices, nommeś DGSM (Derivative-
based Global Sensitivity Measures) basés sur la moyenne des deŕivés partielles, ont été
introduits. Dans cet article, une version révisée des indices DGSM est proposeé a�n
d’améliorer leur ef�cacité et leur convergence dans le cas ou` très peu de simulations peuvent
être effectuées. L’ef�cacité de ces indices est montreé sur des cas test analytiques ainsi que sur
un modèle synthétique de réservoir.

Abstract — Screening Method Using the Derivative-based Global Sensitivity Indices with Applica-
tion to Reservoir Simulator— Reservoir simulator can involve a large number of uncertain input
parameters. Sensitivity analysis can help reservoir engineers focusing on the inputs whose uncertain-
ties have an impact on the model output, which allows reducing the complexity of the model. There
are several ways to de�ne the sensitivity indices. A possible quantitative de�nition is the variance-
based sensitivity indices which can quantify the amount of output uncertainty due to the uncertainty
of inputs. However, the classical methods to estimate such sensitivity indices in a high-dimensional
problem can require a huge number of reservoir model evaluations. Recently, new sensitivity indices
based on averaging local derivatives of the model output over the input domain have been introduced.
These so-called Derivative-based Global Sensitivity Measures (DGSM) have been proposed to over-
come the problem of dimensionality and are linked to total effect indices, which are variance-based
sensitivity indices. In this work, we propose a screening method based on revised DGSM indices,
which increases the interpretability in some complex cases and has a lower computational cost, as
demonstrated by numerical test cases and by an application to a synthetic reservoir test model.

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 4, pp. 619-632
Copyright � 2014,IFP Energies nouvelles
DOI: 10.2516/ogst/2013195

http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/04/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/04/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/04/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/04/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/04/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/
http://ifpenergiesnouvelles.fr/


INTRODUCTION

Reservoir simulators are complex computer codes that
model the physical laws governing the recovery process,
and which are mainly modeled by mathematical equa-
tions for the three-phases �ow (oil, gas and water)
through porous media. These simulators involve a large
number of input parameters. The information gathered
on such inputs comes from direct measurements, which
are clearly very limited and are marred by considerable
uncertainty. Thus, it is important to detect in�uential
inputs, whose uncertainties have an impact on the model
output. Once identi�ed, one can reduce the complexity
of the model by �xing the non-in�uential inputs at
default values (de�ned by experts) and focus the atten-
tion on the in�uential inputs.

Sensitivity Analysis (SA) is the study of how the var-
iation (uncertainty) in the output of the computer model
can be apportioned, qualitatively or quantitatively, to
different sources of variation in the input of the model.
Put in another way, it is a technique for systematically
changing parameters in a model to determine the effects
of such changes on the output. The local SA methods
refer to the study of the sensitivity at a �xed point in
the input domain, typically the simple derivative
oY=oxðiÞ of the output Y with respect to a given input
XðiÞ taken at some �xed point x0 in the input domain.
The Global Sensitivity Analysis (GSA) methods [1-4]
refer to the sampling-based methods in which the model
is evaluated for combinations of values sampled from
the distribution (assumed known) of the inputs. Once
the sample is generated, several strategies (including sim-
ple input-output scatterplots) can be used to derive glo-
bal sensitivity measures for the factors.

The variance-based methods are non-linear with
respect to the input parameters, and are based on anal-
ysis of variance (ANOVA) decomposition, which is the
decomposition of the total variance V of output into
terms due to individual factors plus terms due to inter-
action among inputs. Most variance-based methods are
quantitative, and in this work, we will focus on this
class of methods, and more speci�cally on Sobol’s
indices.

One of the main issues with variance-based methods is
computational time. Indeed, a reservoir simulator is
often very costly in terms of computational time. Fur-
thermore, such variance-based methods generally
require several thousands simulations that are usually
not affordable in common applications. In order to per-
form SA with a limited number of runs, metamodel
methods can therefore be used. In the latter, the simula-
tor input/output relation is approximated using different
statistical regression techniques starting from an initial

set of carefully chosen training runs. Then, if a reason-
ably good approximation is obtained, the estimated
metamodel is used instead of the complex simulator to
compute the sensitivity indices. Metamodel methods
have known a quick development in the last decade
and different approaches have been suggested in many
different scienti�c disciplines [5-13]. However, despite
signi�cant advances in the area, construction of a suf�-
ciently accurate approximation for high-dimensional
computer code using a relatively low number of model
evaluations is problematic.

Screening methods aim at reducing the input dimen-
sionality by identifying the non-in�uential inputs with
a low computational cost in terms of model evaluation.
The screening design proposed by Morris [14] is adapted
for high-dimensional expensive computer models. This
method is a One-factor-At-a-Time (OAT) technique that
varies one input parameter at a time and measures the
impact on the output. Indeed, the method is based on
calculating a sensitivity index called an elementary
effect, which provides a good compromise between accu-
racy and ef�ciency. However, although this method is
computationally cheaper than other SA methods, it
involves hundreds or thousands (depending on the num-
ber of inputs and the complexity of the model) of model
evaluations, which is still computationally intensive with
realistic reservoir simulators, for which each simulation
requires several hours or days.

Recently, Sobol and Kucherenko [15, 16] have pro-
posed new sensitivity indices based on averaging local
derivatives of the model output over the input domain.
It was shown that the so-called Derivative-based Global
Sensitivity Measures (DGSM) can be easily estimated
and much faster than the global sensitivity indices. In
addition, different methods exist to ef�ciently compute
the derivatives of reservoir simulators; in this case,
DGSM represent a valid alternative to the Morris
method for screening the input parameters.

In this work, we propose a revised derivative-based
sensitivity index that allows a better convergence of the
estimation and increases the interpretability in some
complex cases. We propose a screening method based
on the de�ned indices. We then employ the method to
perform a screening of a high-dimensional analytical test
case and of a synthetic reservoir model application.

1 GLOBAL SENSITIVITY ANALYSIS AND MORRIS DESIGN

First, let us consider a mathematical model for a reser-
voir simulator:

Y ¼ f ðXÞ ð1Þ
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where Y is a scalar output of the computer code,
X ¼ ðXð1Þ; . . . ; XðdÞÞ a unit d-dimensional input vector
(X 2 ½0; 1�d) which represents the uncertain parameters/
factors of the simulator and f : ½0; 1�d ! R is a function
that models the relationship between the input factors
and the output of the computer code.

1.1 Global Sensitivity Analysis

The main idea of Sobol’s approach [4] is to decompose
the response Y ¼ f ðXÞ into summands of different
dimensions via analysis of variance decomposition
(ANOVA) de�ned as:

f Xð Þ ¼f0 þ
Xd

j¼1

fj X jð Þ
� �

þ
X

j< l

fjk X jð Þ; X lð Þ
� �

þ . . .

þ f1;...;d X 1ð Þ; . . . ; X dð Þ
� �

ð2Þ

wheref0 is a constant,fj ’s are univariate functions repre-
senting the main effects,fjl ’s are bivariate functions rep-
resenting the two-way interactions, and so on.

The integrals of every summand of this decomposition
over any of its own variables is assumed to be equal to
zero, i.e:

Z 1

0
fj1;...;jsðX

ðj1Þ; . . . ; XðjsÞÞdXðjkÞ ¼ 0 ð3Þ

where 1 � j1 < . . . < js � d, s ¼ 1; . . . ; d and 1 � k � s.
It follows from this property that all the sum-
mands in Equation (2) are orthogonal, i.e., if
ði1; . . . ; isÞ6¼ ðj1; . . . ; jlÞ, then:

Z

Xd
fi1;...;isfj1;...;jl dX ¼ 0 ð4Þ

Using the orthogonality, Sobol [4] showed that such
decomposition of f ðXÞis unique and that all the terms
in Equation (2) can be evaluatedvia multidimensional
integrals:

f0 ¼ EðYÞ ð5Þ

fjðXðjÞÞ ¼EðYjXðjÞÞ � EðYÞ ð6Þ

fj;lðXðjÞ; XðlÞÞ ¼EðYjXðjÞ; XðlÞÞ � fj � fl � EðYÞ ð7Þ

whereEðYÞand EðYjXðjÞÞare, respectively, the expecta-
tion and the conditional expectation of the output Y.
Analogous formulae can be obtained for the higher-
order terms. If all the input factors are mutually indepen-
dent, the ANOVA decomposition is valid for any

distribution function of the XðiÞs and using this fact,
squaring and integrating (2) over ½0; 1�d, and by
Equation (4), we obtain:

V ¼
Xd

j¼1

Vj þ
X

1� j< l� d

Vjl þ . . . þ V1;2;...;d ð8Þ

where Vj ¼ V½EðYjXðjÞÞ� is the variance of the condi-
tional expectation that measures the main effect ofXj

on Y and Vjl ¼ V½EðYjXðjÞ; XðlÞÞ� � Vj � Vl measures
the joint effect of the pair ðXðjÞ; XðlÞÞon Y. The total var-
ianceV of Y is de�ned to be:

V ¼ E Y2� �
� f 2

0 ð9Þ

Variance-based sensitivity indices, also called Sobol
indices, are therefore de�ned by:

Sj1;...;js ¼
Vj1;...;js

V
ð10Þ

where 1 � j1 < . . . < js � d and s ¼ 1; . . . ; d. Thus,
Sj ¼ Vj=V is called the �rst-order sensitivity index (or
the main effect) for factor XðjÞ, which measures the main
effect of XðjÞ on the output Y, the second-order index
Sjl ¼ Vjl =V, for j 6¼ l, is called the second-order sensitivity
index and expresses the sensitivity of the model to the
interaction between the variablesXðiÞand XðjÞon Y, and
so on for higher-orders effects. The decomposition in
(8) has the useful property that all sensitivity indices
sum up to one:

Xp

j¼1

Sj þ
X

1� j< l� p

Sjl þ . . . þ S1;2;...;p ¼ 1 ð11Þ

The total sensitivity index (or total effect) of a given
factor is de�ned as the sum of all the sensitivity indices
involving the factor in question:

STi ¼
X

l# i

Vl

V
¼

VTi

V
ð12Þ

where#i represents all theSj1;...;js terms that include the
index i. The total effect index of an input XðiÞ measures
the part of output variance explained by all the effects
in which it plays a role. Note, however, that the sum of
all STi is higher than one because interaction terms are
counted several times. It is also important to note that
total effect indices can be computed by a single multidi-
mensional integration and do not require computing all
high-order indices (Sobol [4]). Therefore, comparing the
total effect indices provides information about in�uen-
tial parameters. Indeed, one can suppose that the input
is non-in�uential if its total effect STi is less than0:01.
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GSA enables the explaination of the variability of the
output response as a function of the input parameters
through the de�nition of total and partial sensitivity
indices. The computation of these indices involves the
computation of several multidimensional integrals that
are estimated by the Monte-Carlo method and thus
requires huge random samples. For this reason, GSA
techniques are prohibitive if used directly using the com-
puter code (�uid �ow simulator, for example).

1.2 Morris's Screening Method

The screening method introduced by Morris [14] is based
on a OAT experimental design. The points of the Morris
design are sampled from ad-dimensionalp-level grid, as
the range of each inputXðiÞ is divided into p equal levels.
The impact of varying one input at a time is evaluated by
the so-called elementary effect that, fori ¼ 1; . . . ; d, is
de�ned as:

dr
i ðX

rÞ ¼
f ðXr

i Þ � f ðXrÞ
�

ð13Þ

where� is a multiple of 1=ðp � 1Þwith p the number of
levels,Xr is a randomly chosen point in½0; 1�d such that
XðiÞþ � is still in ½0; 1� and:

Xr
i ¼ Xð1Þ; . . . ; Xði� 1Þ; XðiÞþ � ; Xðiþ 1Þ; . . . ; XðdÞ

The group of points composed ofXr and Xr
i s are called

trajectories. Thus, the Morris design is structured inR
random trajectories composed ofRðd þ 1Þpoints.

The sensitivity measures proposed by Morris [14] are
de�ned as a statistics of the elementary effect. The �rst
one is the mean̂l i :

l̂ i ¼
1
R

XR

r¼1

dr
i ð14Þ

which is a measure of theith input importance. The sec-
ond statistic is the standard deviation of the elementary
effect r̂ i :

r̂ i ¼

����������������������������������������
1

R� 1

XR

r¼1

ðdr
i � l̂ iÞ

2

vu
u
t ð15Þ

which is a measure of the non-linearity and the interac-
tions involved in the ith input. However, r̂ i does not
allow one to distinguish between non-linearities and
interactions.

Noting that when the model is non-monotonic the ele-
mentary effects of opposite signs cancel each other,

Campolongo et al. [17] proposed the sensitivity measure
l̂ �

i , which is a revised version of̂l i :

l̂ �
i ¼

1
R

XR

r¼1

jdr
i j ð16Þ

To identify the non-in�uential inputs, the sensitivity
measureŝl �

i and r̂ i are simultaneously considered. Typ-
ically, for more interpretability, l̂ �

i and r̂ i are displayed
on a 2D graph. An example is shown inFigure 1; we
can distinguish three groups of inputs. The inputs of
group 1, group 2 and group 3 will be respectively classi-
�ed as non-in�uential, having linear effects, and having
non-linear and/or interaction effects.

2 DERIVATIVE-BASED SENSITIVITY ANALYSIS

2.1 Derivative-based Global Sensitivity Measures

First introduced by Sobol and Gresham [18] and then
studied in Kucherenkoet al. [19], Sobol and Kucherenko
[15, 16] and Lamboni et al. [20], DGSM are a new sensi-
tivity indices based on averaging local derivatives of the
model output over the input domain.

Assume thatof ðXÞ=oxðiÞ, for i ¼ 1; � � � ; d, are square-
differentiable. The DGSM indices are de�ned as:

mi ¼ E
of ðXÞ
oxðiÞ

� � 2
" #

¼
Z

of ðXÞ
oxðiÞ

� � 2

dx ð17Þ
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Figure 1

An example of a graph displaying the Morris sensitivity
measureŝl �

i and r̂ i .
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Thus, calculation of DGSM indices is based on the
evaluation of integrals, which is easily performed
using classical Monte-Carlo (MC), Quasi-Monte-Carlo
(QMC) or Latin Hypercube Sampling (LHS). The
empirical estimator of mi is given by:

m̂i ¼
1
n

Xn

j¼1

of ðXjÞ
oxðiÞ

� � 2

ð18Þ

It is important to note that the ability to calculate
derivatives ef�ciently is important for estimating DGSM
indices within an acceptable computational cost.

2.1.1 Link between DGSM and GSA

Recently, Sobol and Kucherenko [15] have established
the link between the DGSM indexmi and the total effect
index STi for input variables following uniform and nor-
mal distributions. These results have been extended to
the standard log-concave distributions by Lamboni
et al. [20]. Here, we assume thatXðiÞ � U½ai; bi �, for
i ¼ 1; . . . ; d, the link between VTi and mi is de�ned by
the following inequality:

VTi �
ðbi � aiÞ

2

p2 mi ¼ m�
i ð19Þ

Thereby, the total effect indices have the following
upper bound:

STi �
m�

i

V
¼ ! i ð20Þ

whereV is the total variance of the model. If! i • 0, then
XðiÞ can be considered as non-in�uential input, which
makes ! i a good candidate for a screening procedure.
However, as has been shown in Sobol and Kucherenko
[15], for highly non-linear functions the ranking of
important inputs obtained with ! and total effect indices
may not be the same.

2.1.2 Link between DGSM and the Morris Method

Kucherenko et al. [19] have introduced two derivative-
based sensitivity indices that are very similar to the
Morris indices l i and r i. These indices are de�ned, for
i ¼ 1; . . . ; d, as:

�Mi ¼
Z

of ðXÞ
oxðiÞ

dx ð21Þ

and

�R2
i ¼

Z
of ðXÞ
oxðiÞ

� � 2

dx � �M2
i ð22Þ

where �Mi is equivalent to l i and �R2
i equivalent to r 2

i . In
addition, these indices are more accurate than Morris’s
indices, which cannot correctly consider effects with
characteristic dimensions less than� . Indeed, in (13)
the elementary effectsdr

i are calculated as �nite differ-
ences with the increment� , which has the same order
of magnitude as the uncertainty range of inputs, in con-
trast with the derivative-based indices�Mi and �R2

i , where
the elementary effects are substituted by the local
derivatives.

We can also note that the DGSM indicesmi can be
de�ned as:

mi ¼
Z

of ðXÞ
oxðiÞ

� � 2

dx ¼ �M2
i þ �R2

i ð23Þ

2.2 Re� ning the DGSM Index!

In the previous section, we have shown that the sensitiv-
ity index ! is an upper bound of the total effect index.
However, for some complex models,! can be much lar-
ger than the corresponding total effect index (Lamboni
et al. [20]). In this case, it is dif�cult to decide which
inputs are in�uential and which are not. In addition,
! estimation involves the variance of the model
output V. Empirical results (see next section) show that
estimation of V requires more model evaluation than
estimation of m.

We propose here a normalized version of! that we
call ! � , which is de�ned, for i ¼ 1; . . . ; d, as:

! �
i ¼

m�
i

Pd

j¼1
m�

j

ð24Þ

This index is a normalized upper bound of VTi .
Indeed, the link between! �

i and VTi is de�ned as:

VTi

Pd

j¼1
m�

j

� ! �
i ð25Þ

In addition, ! � has the following useful properties:

0 � ! �
i � 1 ð26Þ

and

Xd

i¼1

! �
i ¼ 1 ð27Þ

The drawback of ! � is the loss of the link with the
total effect indices. Nevertheless, the use of! � offers a
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stronger measure to de�ne the non-in�uential inputs, as
we will see in the next sections.

3 DGSM-BASED SCREENING METHOD

As shown in Section 2, estimating! � for each input
allows one to detect the in�uential inputs in the model.
Indeed, one can state that if!̂ �

i � 0:01, the correspond-
ing input XðiÞcan be de�ned as non-in�uential. However,
such a criterion may be too strong in the case of very
high-dimensional models (typically more than100input
parameters); the fact is that the sum of effects due to
inputs with small sensitivity indices may be signi�cant
on the output model variance. Because of this, and by
using the property (27) of the! � measures, it is more
robust to state that the in�uential inputs are the setD
of d� inputs whose! �

i are the highest, and which respect
the following criterion:

X

i2D

! �
i � 0:98 ð28Þ

Given that the reservoir simulator evaluation may be
computationally demanding, it is important to use a
sequential strategy to build the design of points by reus-
ing at each step the already evaluated points. The use of
the so-called QMC Sobol sequence [21, 22] is an ef�cient
way to build a sequential design. Our choice is motivated
by two main properties of the QMC Sobol sequences.
First, this technique is based on the generation of deter-
ministic quasi-random sequences with a good space-
�lling property of the unit hypercube; in other words,
the input domains are well covered for fairly small sets.

Second, the points of the Sobol sequence are indepen-
dent. That is, by enriching the design sequentially, one
keeps the space-�lling properties of the Sobol
sequence.

Since a sequential method computes successive esti-
mation of the ! �

i indices, a practical test is needed to
determine when to stop the iteration. In this work, we
propose to use the following error criterion:

errl ¼
1=10

P 10
k¼1jj ! �

ðlÞ� ! �
ðl� kÞjj

jj ! �
ðlÞjj

ð29Þ

where vectors! �
ðlÞ ¼ ð! �

1; . . . ; ! �
dÞare the lth estimation

of ! �
i indices andjj�jj is the Euclidean norm. Thus, we

de�ne the stopping criterion as err � 0:05. Note that
the proposed stopping criterion was not chosen as a con-
vergence criterion for each of the indices, because this
might be very long. The criterion chosen is more global
and it is intended to detect as soon as possible in�uential
or not-in�uential parameters in order to perform the
screening. A schematic representation of the entire
screening method is shown inFigure 2. Note that one
can use the same stopping criterion (29) to estimate! i

indices.

4 NUMERICAL TESTS

In this section, two numerical test cases are used to dem-
onstrate the estimation performance of the DGSM index
! � and the accuracy of the proposed screening method
to detect the in�uential inputs. Adopting the QMC sam-
pling method, each input parameterXðiÞis uniformly dis-
tributed in ½0; 1�.

Initialization

Build an initial design X
using QMC

Run the reservoir simulator
at X and store the output
data and the gradient calculation

– For i = 1,···, d, compute � �
i 

For i = 1,···, d, compute � �
i  

– If stopping criterion is
reached go to the screening
step

Enrichment of the design

– While the stopping criterion
is not reached do:

– Add a new point to X

– Run the reservoir simulator
at the new point and
store the output data and
the gradient calculation

–

Screening

– Determine the in�uential
input set D, which has the
highest � �

i  and respects the
following criterion

–

–

�
i� D

� �
i � 0.98  

Figure 2

Schematic representation of the screening method.
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4.1 The Test Case of Morris

The test function proposed by Morris [14] contains 20
input parameters and is de�ned as follows:

y ¼ b0 þ
X20

i¼1

biwi þ
X20

i< j

bi;jwiwj þ
X20

i< j< l

bi;j;lwiwjwl

þ
X20

i< j< l< s

bi;j;l;swiwjwlws

where wi ¼ 2 	 ð XðiÞ� 1=2Þexcept for i = 3, 5, and 7,
where wi ¼ 2 	 ð 1:1XðiÞ=ðXðiÞþ 1Þ � 1=2Þ. Coef�cients
with relatively large values are:

bi ¼ 20 for i ¼ 1; � � � ; 10

bi;j ¼ � 15 for i; j ¼ 1; � � � ; 6

bi;j;l ¼ � 10 for i; j; l ¼ 1; � � � ; 5

bi;j;l;s ¼ 5 for i; j; l ; s ¼ 1; � � � ; 4

8
>>><

>>>:

the remaining bi and bi;j are independently generated
from a standard normal distribution. The remaining
bi;j;l and bi;j;l;s are set to zero.

Table 1 summarizes the results of! i and ! �
i estima-

tion using 100 realizations of two sizes (n ¼ 50 and
n ¼ 500) built by the Latin hypercube design procedure
[23]. The goal here is to compare the robustness of the
estimators. It is clear that the ! �

i estimators are more
robust than the ! i estimator, which can be explained
by the fact that the estimation of the model variance
requires more model evaluations than estimation of
DGSM mi.

In Figure 3, one can see the results of computing! i

and ! �
i sequentially with a QMC design ranging from

n ¼ 5 to n ¼ 256. In addition, the sample size when the
stopping criterion of the proposed screening method is
reached is represented by the red vertical line. Thereby,
we can notice that! �

i converge faster than! i . Indeed,

TABLE 1

Results of averaging, over100 realizations, the estimated! i and ! �
i sensitivity indicesversusthe sample size for the Morris function.

The estimated standard deviation is given in parentheses

! i
* (n = 50) ! i (n = 50) ! i

* (n = 500) ! i (n = 500)

X(1) 0.158 (0.020) 0.322 (0.079) 0.158 (0.007) 0.310 (0.026)

X(2) 0.158 (0.019) 0.322 (0.073) 0.157 (0.007) 0.307 (0.021)

X(3) 0.084 (0.010) 0.169 (0.036) 0.085 (0.004) 0.167 (0.012)

X(4) 0.157 (0.019) 0.319 (0.077) 0.159 (0.006) 0.311 (0.025)

X(5) 0.086 (0.011) 0.174 (0.037) 0.085 (0.004) 0.166 (0.013)

X(6) 0.058 (0.008) 0.117 (0.024) 0.058 (0.003) 0.114 (0.009)

X(7) 0.047 (0.005) 0.095 (0.023) 0.046 (0.004) 0.091 (0.011)

X(8) 0.077 (0.012) 0.158 (0.043) 0.079 (0.010) 0.156 (0.024)

X(9) 0.081 (0.010) 0.166 (0.046) 0.079 (0.009) 0.154 (0.021)

X(10) 0.079 (0.011) 0.161 (0.041) 0.077 (0.007) 0.152 (0.020)

X(11) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)

X(12) 0.002 (0.001) 0.003 (0.002) 0.001 (0.001) 0.003 (0.001)

X(13) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)

X(14) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.001)

X(15) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)

X(16) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.001)

X(17) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)

X(18) 0.001 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.001)

X(19) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)

X(20) 0.002 (0.001) 0.003 (0.002) 0.002 (0.001) 0.003 (0.002)
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the stopping criterion is reached atn ¼ 43 for ! �
i and at

n ¼ 67 for ! i estimations. In Table 2, for the inputs
selected by the proposed screening method, the values
of the total effect indices (obtained by the so-called
extended FAST method [2] using a sample of size
N ¼ 3:5 	 104) as well as the values of! i and ! �

i (com-
puted at the stopping criterion sample sizesn ¼ 67 and
n ¼ 43) are reported. Note that the values of the indices
ST11; . . . ; ST20 are smaller than0:005 and therefore, the

corresponding inputs are considered to be non-
in�uential.

It can be seen that for this test case both indices (! i

and ! �
i ) are able to identify the in�uential inputs cor-

rectly at the stopping criterion (29). Furthermore, even
if at n ¼ 67 the ! i indices are underestimated they are
almost for all inputs greater than but close to the total
effect indices. To conclude on this numerical test, we
can say that for the Morris function the developed
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Figure 3

Convergence of the! i and ! �
i indices estimatesversusthe sample size for the Morris function. The red vertical line corresponds to the

sample size when the stopping criterion (29) is reached.
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screening method based on! �
i is ef�cient and not con-

suming in terms of model evaluations. However, esti-
mating ! i indices provides more information since they
are very close as an upper bound to the total effect indi-
ces, but the drawback is the additional model evaluation
cost.

4.2 The G-Sobol Function

Consider the g-Sobol function, which is strongly non-
linear and is described by a non-monotonic relationship.
Because of its complexity and the availability of analyt-
ical sensitivity indices, this function is a well-known test
case in the studies of GSA. Let us de�ne the g-Sobol
function for 200 input parameters as follows:

gSobolðX
ð1Þ; . . . ; Xð8ÞÞ ¼

Y8

k¼1

gkðX
ðkÞÞ

with:

gkðX
ðkÞÞ ¼

4XðkÞ� 2
	
	

	
	 þ ak

1 þ ak

wheref a1; . . . ; a20g ¼ f0; 0:25; 0:5; 0:75; 1; 2; . . . ; 16gand
f a21; . . . ; a200g ¼ 99. The contribution of each input XðkÞ

to the variability of the model output is represented by the
weighting coef�cient ak. The lower this coef�cient ak, the
more signi�cant the variable XðkÞ.

The analytical values of Sobol’s indices are given by:

Vj ¼
1

3ð1 þ ajÞ
2

V ¼
Yd

k¼1

ðVk þ 1Þ � 1

Sj1;...;js ¼
1
V

Ys

k¼1

Vk

where1 � j1 < . . . < js � d and s ¼ 1; . . . ; d. The analyt-
ical values of the total effect indices are shown inTable 3.
Figure 4 shows the sequential estimation of! �

i and ! i

indices with a QMC design ranging from n ¼ 5 to
n ¼ 256. As for the previous test example, the estima-
tions of ! �

i indices converge faster than those! i. In this
test case, the stopping criterion (29) is reached atn ¼ 41
for ! �

i and n ¼ 59 for ! i . The analytical values of the
total effect indices as well as the values of! i and ! �

i (esti-
mated at the sample sizesn ¼ 59 and n ¼ 41) for the
inputs which are identi�ed as in�uential by the screening
method are reported inTable 3. Note that the values of
the indices ST12; . . . ; ST200 are smaller than 0:007 and
therefore, the corresponding inputs are considered to
be non-in�uential. One can see that the information pro-
vided by the indices! 1; � � � ; ! 4 is dif�cult to interpret.
Indeed, for the g-Sobol function the values of! is pro-
vide only qualitative information, because for some
inputs ! i > 1, which is higher than the maximal value
for the total effect indices. These results may due to
the model non-linearity with respect to the inputs. On
the other hand, despite the non-linearity and non-
monotonicity of the model, the ! �

i measures perform
very well in terms of quantitative interpretability.

TABLE 2

Estimated sensitivity indices for the Morris function

Input Total effect ! i (n = 67) ! i
* (n = 43)

X(1) 0.240 0.249 0.114

X(2) 0.241 0.244 0.164

X(3) 0.095 0.127 0.088

X(4) 0.245 0.252 0.137

X(5) 0.098 0.137 0.083

X(6) 0.082 0.081 0.048

X(7) 0.050 0.078 0.053

X(8) 0.105 0.133 0.091

X(9) 0.099 0.123 0.084

X(10) 0.106 0.173 0.118

TABLE 3

Analytical total effect indices and estimated DGSM indices for the
g-Sobol function

Input Total effect ! i (n = 59) ! i
* (n = 41)

X(1) 0.396 3.671 0.338

X(2) 0.279 3.111 0.266

X(3) 0.205 1.781 0.144

X(4) 0.156 1.383 0.088

X(5) 0.122 0.911 0.072

X(6) 0.057 0.397 0.031

X(7) 0.032 0.234 0.017

X(8) 0.021 0.169 0.011

X(9) 0.015 0.106 0.008

X(10) 0.011 0.078 0.005

X(11) 0.009 0.061 0.004
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The above two numerical tests show us that both
DGSM indices are adapted to identify the non-in�uential
inputs. Moreover, the property (27) of ! �

i indices allows
one to use an automatic screening method regardless of
the complexity of the studied model.

5 RESERVOIR FORECASTING APPLICATION

In this section, the proposed screening method is applied
to a reservoir simulator. As the goal here is to apply the
method to a high-dimensional case, we chose to use hor-
izontal and vertical permeability as input parameters.
However, since the number of grid blocks in the consid-
ered reservoir simulation model is large, we applied the
most basic parametrization technique, which is zona-
tion, to reduce the dimension of the problem. This tech-
nique consists of dividing the reservoir into a relatively
small number of zones (subregions) and assuming that
each zone is homogeneous. In other words, one �xes
the permeability (horizontal or vertical) over all the grid
blocks of the considered zone.

5.1 Reservoir Model Description

The PUNQS case is a synthetic reservoir model taken
from a real �eld located in the North Sea. The PUNQS
test case, which is quali�ed as a small-size model, is fre-
quently used as a benchmark reservoir engineering
model for uncertainty analysis and for history-matching
studies [24].

The geological model contains 19	 28	 5 grid
blocks, 1 761 of which are active. The reservoir is sur-
rounded by a strong aquifer in the North and the West,
and is bounded to the East and South by a fault (Fig. 5).
A small gas cap is located in the center of the dome-
shaped structure. The geological model consists of �ve
independent layers, where the porosity distribution in
each layer was modeled by geostatistical simulation.
The layers1, 3, 4 and 5 are assumed to be of good qual-
ity, while the layer 2 is of poorer quality. The �eld con-
tains six production wells located around the gas-oil
contact. Due to the strong aquifer, no injection wells
are required. For more detailed description of the
PUNQS model, see [25].
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Convergence of the! i and ! �
i indices estimatesversusthe sample size for the g-Sobol function. The red vertical line corresponds to the

sample size when the stopping criterion (29) is reached.
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As input parameters, we considered the horizontal
and vertical permeability of 60 zones (12 for each layer).
Thus, we have a model of180inputs, which are supposed
to be independent and de�ned as follows:
– Z1; � � � ; Z60: horizontal permeability in X direction,
– Z61; � � � ; Z120: horizontal permeability in Y direction,
– Z121; � � � ; Z180: vertical permeability.

The values of the permeability in each zone are dis-
tributed uniformly over ½PZi � 0:2PZi; PZi þ 0:2PZi�,
wherePZi is the arithmetic mean of the permeability val-
ues of the grid blocks which compose theith zone.

The analyzed output is the production watercut data
(the proportion of water in the produced oil) after
20 years of production of the well 5, for which the per-
foration location correspond to the grid blocks
½17;11;3 : 4�, where the notation 3 : 4 means that there
is a perforation at layer 3 and at layer 4. The reservoir
test model was run using the PumaFlowTM [26] simu-
lator, which allows one to compute gradients using a
gradient simulator method [27, 28] with an additional
� 33% of the simulation time per each calculated gra-
dient.

5.2 Screening

For this reservoir model, we �rst performed a conver-
gence study of the DGSM indices.! i and ! �

i are com-
puted sequentially with a QMC design ranging from
n ¼ 5 to n ¼ 200. From Figure 6, one can see that! �

i
indices converge much faster than! i indices. The stop-
ping criterion (29) was reached atn ¼ 18 for ! �

i and at
n ¼ 42 for ! �

i indices estimation.
The screening method identi�es13 zones as in�uen-

tial. The DGSM sensitivity measures of these14 param-
eters are reported inTable 4. We can see that these zones
correspond to the region where the studied well is
located and the closest north region. This result demon-
strates the relevance of application of the developed
screening methodology to a reservoir simulator.

To corroborate these screening results, we built a
metamodel using a standard implementation of the
Gaussian Process method (GP). The GP code used here
is a commercial version implemented in the Cougar-
FlowTM software [29]. For more detail on the technical
aspect of the used GP, we refer to Section 3 of Busby
et al. [6]. The GP metamodel is built using the results
obtained in the QMC design of the sizen ¼ 200. How-
ever, instead of using the full design of180inputs we just
selected the13 inputs identi�ed as in�uential by the
screening method. Thus, rather than building a meta-
model that approximates a reservoir model of180inputs
we built a metamodelf̂ which involves only the param-
eters that are supposed to be in�uential on the output.
To assess the prediction accuracy of the metamodel,
we performed an extra100 random evaluations of the
PUNQS simulator (with 180 inputs) and compared the
simulator results with the metamodel ones. The measure
of the accuracy is given by theQ2 criterion de�ned by:

Q2 ¼ 1 �

Pntest

i¼1
ðyi � f̂ ðxiÞÞ2

Pntest

i¼1
ðyi � �yÞ2

; with ntest ¼ 100 ð30Þ

whereyi denotes theith simulator evaluation on the test
set, �y is their empirical mean andf̂ ðxiÞis the predicted
value at the design point xi ¼ ðxð1Þ

i ; . . . ; xð180Þ
i Þ. The

empirical Q2 criterion of the considered metamodel̂f
is equal to 0:94, which means that the metamodel
explains94% of the output variance. Thus, the obtained
metamodel is suf�ciently accurate to perform a global
sensitivity analysis. In the second column ofTable 4,
the reported total effect indices were computed through
the metamodelf̂ and using the extended FAST method
[2]. From Table 4, one can say that the developed
screening method permits the detection of the
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Convergence of the! i and ! �
i indices estimatesversusthe sample size for the production watercut output after20 years of production

of the well 5. The red vertical line corresponds to the sample size when the stopping criterion (29) is reached.

TABLE 4

Estimated sensitivity indices for the production watercut output after 20 years of production of the well 5

Input Total effect ! i (n = 42) ! i
* (n = 18) Grid block position

Z58 0.625 0.528 0.542 [13:19;8:14;5]

Z118 0.133 0.158 0.176 [13:19;8:14;5]

Z117 0.066 0.059 0.051 [13:19;1:7;5]

Z10 0.058 0.055 0.058 [13:19;8:14;1]

Z34 0.035 0.045 0.047 [13:19;8:14;3]

Z93 0.022 0.022 0.022 [13:19;1:7;3]

Z94 0.014 0.019 0.021 [13:19;8:14;3]

Z46 0.021 0.018 0.021 [13:19;8:14;4]

Z70 0.014 0.013 0.015 [13:19;8:14;1]

Z105 0.005 0.012 0.012 [13:19;1:7;4]

Z69 0.009 0.005 0.004 [13:19;1:7;1]

Z106 0 0.004 0.004 [13:19;8:14;4]

Z166 0.009 0.004 0.004 [13:19;8:14;4]
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most important inputs. Concerning the input Z106, we
notice a difference between the metamodel and the
DGSM approach; it is not possible to conclude if this
difference is due to an error in the metamodel or in
the DGSM; however, the two approaches provide the
same conclusions that the parameter Z106 can be con-
sidered as not in�uential. We can notice that for this res-
ervoir model the values of! i and ! �

i indices have the
same magnitude for all selected inputs at the stopping
criterion and the values of! i are smaller than the esti-
mated total effect, which is due to the underestimation
of ! i indices atn ¼ 42.

CONCLUSIONS AND DISCUSSIONS

In this work, we presented a new sequential screening
method which is based on DGSM indices. We de�ned
a new DGSM index ! �

i in order to have a stronger
quantitative measure to de�ne the non-in�uential inputs.
We also used the QMC Sobol sequence sampling
method, which allows an intelligent sequential estima-
tion of the DGSM indices in order to reduce the number
of model evaluations. We empirically showed, by apply-
ing to two analytical models and a reservoir synthetic
test case, that the proposed screening method is ef�cient
in detecting the non-in�uential inputs for an acceptable
computational cost.

Computing DGSM indices requires model gradient
estimation. A classical way to compute the derivatives
is to use the �nite-difference approximation method.
However, this method suffers from the fact that the
required number of model evaluations is equal to
nðd þ 1Þ, whered is the number of inputs andn the num-
ber of points where derivatives are estimated. Since a res-
ervoir simulator evaluation is generally time-consuming,
the �nite-difference method is infeasible for models with
a high number of inputs (roughly more than20).

Therefore, it is clear that the ability to calculate deriv-
atives ef�ciently is important for estimating DGSM indi-
ces within an acceptable computational cost. In the
framework of reservoir simulation, different methods
have been developed for more or less computationally
ef�cient gradient calculation. In this paper, we utilized a
reservoir simulator, which allows one to compute
gradients using the direct method, also called in reservoir
engineering the gradient simulator [27, 28]. This method
is based on the solution of the governing analytical �nite
difference equations of �ow, which automatically calcu-
late the gradients during the simulation with an addi-
tional � 33% of the simulation time per each calculated
gradient. Thus, the required number of model evaluations
to estimate DGSM indices is� nðd þ 1Þ=3. However, the

most ef�cient method to calculate the gradient of a func-
tional with respect to the reservoir simulator parameters
is the adjoint state method when this functional depends
on those model parameters through state variables, which
are the solution of the differential equations that de�ne
the problem. The advantage of this method compared
with the gradient simulator method is that it consists of
the computation of one unique extra linear system and
the computation of the gradient with respect to the model
parameters is equivalent to one evaluation of the simula-
tor. In other words, it means that the computational cost
of gradient calculation is independent of the number of
model parameters. So, the required number of model
evaluations to estimate DGSM indices is equal to2n.
For more details on the mathematical aspect of the
adjoint state method and its applications in reservoir sim-
ulation, we refer to [30-32].

In addition to further testing on reservoir models,
using a reservoir simulator which allows one to compute
gradients using the adjoint state method is a topic of
future work.
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