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ABSTRACT 

In order to be able to upgrade the heaviest part of the crude oil one needs to remove several impurities, 

such as sulfur or metals. Residue hydrotreatment in fixed beds, under high hydrogen pressure can 

achieve high removal performances, with an industrial catalysts optimized staging. Despite the recent 

improvements, petroleum residues remain very difficult to describe and characterize in detail. Several 

kinetic models have been developed, but mostly they are feed dependant and their predictions are not 

satisfying for residues of different origins. Based on a recent study comparing residue properties and the 

differentiating physical-chemical properties responsible for reactivity [1], the present work develops a 
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hydrotreatment kinetic model coupled with mass transfer in the catalyst  which attempts to simulate the 

different residue performances. After estimation of kinetic parameters for a given residue, the model 

was validated for three other residues. This new model is able to take into account differences in residue 

characteristics and gives fairly good simulations of residues performances. 

 

KEYWORDS : Vacuum residue, Diffusion, Kinetic Model, Hydrodesulfurization, 

Hydrodemetallization, reactor modeling 

 

1. INTRODUCTION  

Upgrading petroleum residue into lighter fractions  is crucial to satisfy the increasing energetic demand. 

In addition, the available crude oils are becoming heavier and therefore the removal of impurities, as 

sulfur or metals is more necessary before converting.  Residue upgrading processes produce either more 

distillates (low sulfur fuel oil) or residues suitable for the residue cracking units (RFCC).  Among all 

residue upgrading processes, fixed bed hydrotreatment units are the most frequently used. 

The residue fixed bed hydrotreatment process, Hyvahl TM developed by IFPEN in 1982 [2], consists of 

several trickle bed reactors in series, subdivided into two different reaction sections with specific 

catalysts.   In each one of them. The first section (HDM - hydrodemetallization) is intended to remove 

most of the metals and to disaggregate the large asphaltenes. The second section (HDS – 

hydrodesulfurization) allows, with a deeper desulfurization function, the required sulfur levels to be 

achieved. Both sections operate at high hydrogen pressure and high temperatures. The understanding of 

chemical and physical phenomena in these reactors is a major challenge. 

The heaviest fraction of oil contains a large polydispersity of molecular structures, which is very 

difficult to characterize precisely. A typical way to start residue characterization is by fractionation. The 

heaviest fraction, called asphaltenes, is obtained by precipitation using a paraffin [3]. The nature of 
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asphaltenes is still a subject of much controversy [4-7]. It is nonetheless accepted that they are 

constituted of large size molecules and this phase possibly has a colloidal structure with an high 

concentration of impurities. Their hydrotreatment is then much more difficult than for lighter structures.  

In parallel to the development of the process and understanding of the residue physical and chemical 

properties and reactivities, IFPEN has been working on the development of kinetic and catalyst 

deactivation models for both sections of the process [8-10]. These models give quite satisfying results, 

but were developed for specific Middle East residues and lack accuracy when tested to simulate residues 

of different origins. Alternative hydrotreatment models reported in the literature are based on heavy 

residues originating from other areas but are only tested for the specific residues for which they are 

developed and no general model is suggested [11-15]. 

The problem of such models is that their feed description is quite simple and that the model parameters 

such as kinetic constants, depend on the vacuum residue origin. To overcome such constraints, quite 

complex residue description models based on molecular reconstruction have been developed and can be 

found in the literature [16-18]. However, these models are so complex that, due to their computing time, 

they are almost never integrated in a complete kinetic model of residue hydrocracking and are of very 

difficult practical application. 

In the present work, based on the experimental works of Ferreira et al. [1], we introduce a new heavy 

residue feed description and consequent kinetic network. The aim is that model parameters should be 

independent of vacuum residue origin whilst the model itself remains  as simple as possible. This 

description is then introduced into the reactor/kinetic model which includes the two sections of the 

process. After parameter estimation with a Middle East residue, the model is validated with 

experimental results from three residues with different origins. 

 

2. EXPERIMENTAL SECTION 
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Vacuum residues with quite different characteristics, i.e. densities, sulfur, metals and asphaltenes 

content were selected and tested: Arabian Light, Buzurgan (Iraqi residue), Djeno (African residue) and 

Ural (Russian residue).  

The hydrotreating experiments were performed in an up-flow, isothermal fixed bed reactor unit 

(Figure1). The main equipment is a 500 cm3 reactor, which is loaded with commercial catalysts. A first 

set of experiments was carried out only with the HDM catalyst in order to obtain data on the HDM 

section. A second set of experiments was conducted with the association of HDM and HDS catalysts, 

both catalysts are present in a 50/50 volume ratio.  

Figure 1 – Simplified pilot scheme. 

Residue characterization and experiment details have been reported by Ferreira et al. [1]. 

 

3. MODEL 

The model describes two plug flow reactors taking into account the mass transfer limitations in the 

catalyst. These last, for each reactor, are based on the Stefan-Maxwell model already described by 

Ferreira et al. [19]. However, the model has a new feed description and reaction network that, although 

still based on lumps, tries to improve the residues description. 

3.1 Model assumptions 

The reactor model assumptions are summarized below: 

- Isothermal reactor; 

- The extragranular phase is considered as a plug flow reactor; 

- In the extragranular phase, the liquid phase does not exchange with the gas phase, the 

thermodynamic equilibrium is assumed at each position in space; 
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- The liquid mixture is ideal; 

- Catalytic pellets are represented by spheres (HDM section) or by cylinders (HDS section) with 

average radius Rp; 

- The catalytic pellets are filled with liquid, the gas phase is considered only in the extragranular 

phase; 

- The reactions occur only in the intragranular phase (catalyst), first order reactions are considered 

with respect to reactants; 

- The chemical kinetics do not depend on hydrogen concentration, equilibrium being assumed. 

- The molar volumes in the liquid and adsorbed phase are the same; 

- Thermodynamic equilibrium is assumed between the fluid and adsorbed phases in catalyst 

pellets; 

- All species have the same heat of adsorption (owing to the single-component dependence on 

temperature, this is a relatively good assumption); 

- The adsorption equilibrium is represented by the generalized Langmuir model, assuming the 

same adsorption capacities for all adsorbates on the active sites; 

- Mass transfer in the catalyst pore is described by the Stefan-Maxwell equations adapted to 

diffusion in a porous solid (Dusty Gas Model). Moreover the Stefan-Maxwell model considers 

the volume constraints by the Fornasiero formalism [20]. Considering the difference between 

molecular volumes, Fornasiero adapts the Stefan-Maxwell equations supposing the molecules 

collision occurs only between equivalent volumes. The number of segments is defined as 

follows: 
o
i

sin
ϑ

ϑ
=   with iϑ the molar volume of component i and oϑ the molar volume of the 

reference component, hydrogen (the smallest component). Resistance to mass transfer between 

extragranular and intragranular phases is represented by a linear driving force. 

 

3.2 Material balances 
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The geometrical characteristics of the two reactors corresponding to the HDM and HDS sections are the 

same but the catalysts in the two sections are different. The main differences are the properties of the 

catalyst, such as initial porosity, pore radius and shape. The shape of catalyst differs according to the 

section; the catalyst is spherical for the HDM section and  cylindrical for the HDS section. The mass 

balances will also change slightly. For the balance in the bulk fluid, the specific surface area  
c

c
s V

Sa =  

gives 
c

s R
3a = (case of spherical catalyst), and ( )

cc

cc
s LR

LR2a +
=  (case of cylindrical catalyst). In the latter 

case, cc RL >> , the specific surface area can be approximated to 
c

s R
2a = . 

 The previous hypotheses lead to the following set of equations. φ designates the volume 

fractions, with subscripts corresponding to the species, and the superscript to the phase, fluid 

(extragranular phase), catalytic pellet (intragranular phase); nc designates the number of components. 

The relation between the concentrations in extragranular and intragranular phases and the respective 

volume fractions can be written as follows: o
si

f
i

f
i nC ϑ=φ   for the extragranular phase and o

si
p
i

p
i nC ϑ=φ   

for the intragranular phase 

In the extragranular phase (HDM and HDS) 

( ) )(ka1
z

p
i

f
i

m
ispi

f
if

oi φ−φεε−=
∂

φ∂
νε   1-nc  ,1=i                                                            (1) 

The volume constraint associated with these equations is: 1
1

=∑
=

nc

j

f
jφ       

In the intragranular phase (catalyst pellet) 

Considering that, for the cylindrical catalyst, the radial diffusion is more important that the axial 

diffusion ( cc RL >> ) the same balances inside the catalyst can be written for both catalysts: 

: 
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( ) ( ) icatalystsi
0

p
0
i

2
2p

0
p
i

p rSn1N.r
rr

1
t

ϑε−+
∂
∂

εϑ=
∂
φ∂

ε       nc  ,1=i          

With ir is the global volumetric surface production rate of lump i (mol. m-3 .m-2 .s-1), it defined by solid 

volume and by catalyst surface. 0
iN is the flux defined as following isi

0
i NnN =  

 The volume constraint associated with these equations is ∑
=

=
nc

i

p
i

1

1φ . 

The associated boundaries conditions of this equation system for the intragranular phase are written as 

follows: 

( )
0         ,0at           

      ,at           

0

0
0

==∀

−==∀

i

p
i

f
i

m
i

ip

Nrt

k
NRrt φφ

ϑ  nc  ,1=i  
 

 

On the catalyst surface  

The accumulation of metals and coke on catalyst surface are given by following mass balances: 

icatalystsi
0

S
i rSn

dt
d

ϑ=
φ    with i=Vanadium, Nickel ou coke 

 

The catalyst surface ( catalystS ) varies with the coke deposits according to the following expression: 

coke,occupiedcavailableinitiallyccatalyst SSS −=              

The initially available surface is experimentally measured by the BET technique. A coke unit is 

assumed to be a sphere with diameter ( )cokeR equivalent to average asphaltene diameter found in the 
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works of Tayakout et al. [21] . Its occupied surface ( ) is equivalent to the section surface of 

the sphere and can be written as follows: 

 2
cokecokecoke,occupiedc RNS π=       with       

3
coke

phaseragranularint,p
S
coke

coke
R

3
4

V
N

φ
= .  

The catalyst surface ( catalystS ) becomes: 

coke

phaseragranularint,p
S
coke

available initiallyccatalyst R4
V3

SS
φ

−=                                                                                                                                                                                                                    

 

Flux expression 

The mass transfer is based on the Stefan-Maxwell equations and considers the volume constraints 

according to the Fornasiero formalism [20]. The mass transfer limitations need to be considered in the 

two sections. For the HDM section, despite using a macroporous catalyst it appears that the large size of 

residue molecules (especially asphaltenes) leads to specific steric hindrance constraints that must be 

added to the kinetic and thermodynamic models [22, 23]. 

The flux expression taking into account the Fornasiero formalism is written as follows: 

1n,1i
D

NN
C
1

.n c
cn

ij
1j eff

ij

0
j

p
i

0
i

p
j

T
0

si

p
i −=

φ−φ
=

ϑ
φ∇

∑

≠
=

 

The model also considers that the reaction only occurs at the catalyst surface in the adsorbed phase, and 

the adsorption mechanism is described by a generalized Langmuir isotherm.  

The effective diffusion coefficients of these residues have been described as follows [24] : 

j,ipr
r

peff
ij DKKD

τ

ε
=                                   
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Where jiD ,  is calculated by correlations present in the literature. For the present model, a correlation 

valid for liquids was chosen, the Scheibel correlation. This last is based on molar volume and derived 

from Wilke-Chang correlation [25]: 























ϑ

ϑ
+

ϑη
=

3
2

i

j

3
1

ij

s
j,i

3
1

TA
D                                       

rK and pK are coefficients taking account respectively of reduction of the molecule mobility due to pore 

wall and  partitioning of the solute 














φ

φ
= f

asph

p
asph

pK . 

Two expressions for Kp and Kr have been proposed in the literature [24], depending on the ratio 

λ=Rh/ro where Rh is the hydrodynamic radius of asphaltenes nano-aggregates considered as a sphere 

and r0 the average pore radius: 

)²1( λ−=pK             (14) 

53 948,0089,2104,21 λλλ −+−=rK        

These correlations are accurate when 5.0≤λ . To calculate the ratioλ , it is necessary to know the 

hydrodynamic radius of the molecules, and the pore radius variation with time.  

The hydrodynamic radius hR  can be calculated through the Stokes-Einstein equation:  

hR
kTD
πη6

=∞                                                  

Where ∞D  is considered to be approximately equal to jiD , . This is an approximation often used in the 

literature to have an order of magnitude for molecular radius.  
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Finally, the pore radius is related to the porosity. The porosity decreases due to coke and metal deposits, 

but also due to the adsorbed species. Consequently, the pore radius also decreases. A relationship is 

established by Tayakout et al. [21], between the porosity and the radius with the following assumptions: 

 catalyst pores are supposed to be cylindrical 

 the number of pores is constant with time 

The relation can then be written as follows: 
)0,(
),(

).0,(),( 00 r
tr

rrtrr
p

p

ε
ε

=            

To obtain the pore radius, the intragranular porosity at a given time is calculated through a volume 

balance: ( ) ( )∑ φε−−∑φ−=ε=ε
==

3

1k

S
kp

nd

1k

p
kpp t,r)1(t,r)0t,r()t,r(                                

Given the variation of the pore radius and porosity with time and radial position in the catalyst, 

the effective diffusion coefficients will also vary with time and radial position in the catalyst. 

 

 

3.3 Feed Description (Lumps)  

Through the available analysis, the residue is considered as a mixture composed of fractions (SARA 

fractions). The goal is to have a different quantitative description for each residue, through its 

properties, and not through the kinetics or adsorption parameters. The most complex fractions are 

asphaltenes and resins And previous works have shown that their behaviour is the hardest to describe [8-

9, 12]. So the present model will focus on a more detailed description of both these fractions. 

Usually, the asphaltenes and resins are each described by a single lump two lumps describe the 

asphaltenes and the resins but in this work, in order to take better account of their wide polydispersity, 

they have been divided into fractions depending on the type of metal present, their aliphacity and their 

aromaticity. 
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Firstly, three main types of asphaltenes have been considered: simple asphaltenes, nickel asphaltenes 

and vanadium asphaltenes. Each of these three is divided into 4 sub-groups according to their aliphacity 

(s1 for light aliphacity and s2 for the stronger) and aromaticity (a1 for light aromaticity and a2 for the 

stronger) level.  Thus we consider 4 sub-groups for describing asphaltenes : (a1s1, a1s2, a2s1, a2s2). 

The heaviest asphaltenes are noted Asp a2s2, and the lightest  Asp a1s1. This asphaltenes representation 

is reported in Figure 2. 

 

Figure 2 – Scheme of asphaltenes sub division 

 

The sub-groups were then further divided into molecules containing sulfur, nitrogen or neither element, 

as shown in Figure 2. Each of the 4x3 = 12 asphaltenes presented are divided in three (with sulfur, with 

nitrogen or simple).  For example, the Asp a2s1 (red in Figure 3) can contain sulfur, nitrogen, or neither.  

Figure 3 - Scheme of asphaltenes inside of each sub division. 

In conclusion, we will have 3x4x3 = 36 different asphaltenes. For resins, the reasoning is exactly the 

same. We will also have 36 different resins. 

The other SARA fractions are considered to be less complex, and so their description is simpler. 

Aromatics are described as two species, the aromatics and the sulfured aromatics. Saturates are lumped 

in a single species. The gases formed are described by two species (NH3 and H2S), with their chemical 

properties.  

Finally, the model will have a total of 77 different lumped species (36 for asphaltenes + 36 for resins + 2 

for aromatics + 1 for saturates+ 2 for gas (NH3, H2S)). 

 

3.4 Kinetic Network in the both sections 

The species defined previously have been used to build the kinetic network considering the referred 

reactions (HDM, HDS, cracking....) for the both sections, as shown in Figure 4.  
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Figure 4 – Scheme of asphaltenes with some of the possible reactions. 

Since the number of lumps is rather large, the number of kinetic constants has been limited assuming the 

same rate constants for several related reactions, considering the following assumptions: 

- For each metal, there is one kinetic constant for the asphaltenes, and another for the resins (total of 4 

kinetic constants). After removing the metal, the asphaltene will have the same level of aromaticity and 

aliphacity, as well as the quantity of sulfur and nitrogen. The metal removed will be a deposit in the 

catalyst; 

- Two types of desulfurization reactions have been considered: with and without an alkyl chain removal. 

For all the asphaltenes only two kinetic constants are used, one for each type of desulfurization (the 

resins are treated in the same way); 

- When the desulfurization removes an alkyl chain, the asphaltene aliphacity changes ; 

-  The denitrogenation reactions are only possible in lumps free of metals. For both the asphaltenes and 

the resins, denitrogenation is represented by a single kinetic constant. 

- Two types of cracking reactions have been considered inside the 4 sub-fractions. The level of 

aromaticity and aliphacity changes by removal of an aromatic or a saturate, respectively. Two kinetic 

constants for the asphaltenes and two others for the resins have been associated with these reactions;  

- Only the lightest asphaltenes (Aspa1s1) can crack to give the heaviest resins (Resa2s2); 

- The lightest resins (Resa1s1) can crack to give aromatics and saturates; 

- For the aromatics, only the desulfurization of aromatics takes place; 

- The coke formation is due to resins and asphaltenes, both without metals. 

 

In total, 122 reactions can take place in the reactor, but the model uses only 17 different kinetic 

constants, as shown in the Table 1. 

 

Table 1 – Reactions considered for the kinetic network 
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An apparent first order for all reactions has been assumed; except for demetallization and coke reactions 

where the apparent order is two, one for the lump concentration and one for the active site 

concentration. The active site concentration ( siteq ) decreases with the demetallization and the coke 

formation. The kinetic expressions can be written as follows: 

- Demetallization and coke reactions: site
iii qqkr =  with ik (m3.mol-1.m-2.s-1) defined by m2 of specific 

catalyst surface. 

- Others reactions: iii qkr =  with ik (m-2.s-1) defined by m2 of specific catalyst surface. 

As mentioned before, the model considers that the reactions occur in the adsorbed phase, so adsorption 

coefficients must be considered for the Langmuir equations. The adsorbed concentrations iq can be 

expressed by the following relation: 
∑
=

+
= nc

1j

p
jj

p
ii

site

i
Cb1

Cbq
q  and the active site concentration ( siteq ) by the 

following mass balance: S
Nickel

S
Vanadium

S
cokemax

site
1

q
q

φ−φ−φ−=  with maxq  the active site saturation 

concentration. 

The kinetic expressions become: 

- Demetallization and coke reactions: site
nc

1j

p
jj

p
ii

site

ii q
Cb1

Cbq
kr

∑
=

+
=   

- Others reactions: 
∑
=

+
= nc

1j

p
jj

p
ii

site

ii
Cb1

Cbq
kr   

 

Since maxq  (the maximum value for siteq ) is not known, it is introduced in the apparent kinetic 

constants as follows: 

- Demetallization and coke reactions: ( ) p
inc

1j

p
jj

2S
Nickel

S
Vanadium

S
cokei

'
i C

Cb1

1kr
∑+

φ−φ−φ−
=

=
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- Others reactions: ( ) p
inc

1j

p
jj

S
Nickel

S
Vanadium

S
cokei

'
i C

Cb1

1kr
∑+

φ−φ−φ−
=

=

 

with the kinetic constant for demetallization and coke reactions: ( ) i
2max

ii
' bqkk =  and for other 

reactions i
max

ii
' bqkk = . 

 

 

4. RESULTS AND DISCUSSION 

The model describes the two sections corresponding to both the catalysts, the calculated result at exit 

of the first reactor (catalyst for HDM) has been used as the input to the second reactor (catalyst for 

HDS). In order to obtain the input of the first section, some parameters have to be calculated. 

The fixed parameters are the catalysts properties. The catalysts and their properties are summarized 

in Table 2. 

 

Table 2– Properties for both catalysts (HDM and HDS) used as model input. 

 

4.1 Calculated parameters 

Attribution of number of segments - sin  

To attribute the segment number ( sin ) described in the Fornasiero formalism [20], the molar volume of 

each lump has to be known. This was calculated from the molecular weight and the density of each 

lump ( 0.. ϑρ siii nM = ). To have the order of magnitude of the molecular weight of each fraction, the 

values were chosen from an article [25] where the molecular weights presented were obtained 

experimentally using a vapour pressure osmometer for a Buzurgan residue. The values for densities 

were taken from the same article.  It is also important to notice, that the only sin  attributed are for 

saturates and aromatics. The others are calculated through the kinetic network, in order to respect the 
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mass balance. For each residue GPC (Gas Permeation Chromatography) analysis was used to determine 

a ratio of molecular weights of saturates and aromatics compared to the Buzurgan residue. The segment 

numbers ( sin ) for the other residues (Arabian  Light, Ural and Djeno) were estimated from this . These 

GPC results were used for the comparison between the residues (through a ratio) and not to impose the 

molecular weights and the sin . Indeed, the molecular weights can’t be used because the GPC calibration 

method (based on equivalent to the polystyrene structure) means they are not measured absolutely used 

to calibrate the masses and not an absolute measure. The other molecular weights of Arabian, Ural and 

Djeno were calculated in the same way that for the Buzurgan residue, through the kinetic network, in 

order to respect the mass balance. The segment numbers sin  for aromatics and saturates are reported in 

Table 3.  

 

Table 3 – Calculated sin  for aromatics and saturates of the different residues. 

 

Repartition of asphaltenes, resins and heteroatoms in each sub-fraction 

The asphaltenes and resins have been sub-divided into 4 fractions and each of these sub-fractions 

contains heteroatoms. From normalised GPC distributions [1], four mass intervals have been assumed. 

The GPC distribution of the lightest residue containing the smallest molecules (in the present case Ural) 

was taken as reference. The proportions of each sub-fraction relative to the entire fraction are given by 

the area of each interval for asphaltenes and resins of different vacuum residues respectively in Table 4 

and Table 5. 

 

Table 4 – Distribution of 4 sub-fractions of the asphaltenes for the 4 different vacuum residues. 

Table 5 - Distribution of 4 sub-fractions of the resins for the 4 different vacuum residues. 
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The GPC signal shows the weight molecular distribution of asphaltenes and resins to be not directly 

proportional to the amount of asphaltenes or resins. In fact, the signal is the result of the coupling 

between aromaticity and quantity. In the Tables 4 and 5, it can be observed that for both resins and 

asphaltenes, the sub-fractions 2 and 3 are present in largest quantity. In particular, for asphaltenes sub-

fraction 2 is the greatest, and for the resins the greatest quantity is in the sub-fraction 3.  

Regarding the heteroatoms, little information is available relative to their distribution within the SARA 

fractions. Nonetheless, some work has been done recently, mainly relating to asphaltenes. The authors 

have considered each SARA fractions as an entire fraction, and not as 4 different distributions [26, 27]. 

Specifically for the evolution of asphaltenes in hydroprocessing [27], the sulfur conversion seemed to be 

quite similar in terms of aromaticity and polycondensation. Another work by Marques et al. [28] 

fractioned the asphaltenes of Safaniya (Middle-East heavy) vacuum residue into two fractions, and 

analyzed both these sub-fractions. The authors observed that the smaller asphaltenes had a lower Ni/V 

ratio than the bigger asphaltenes. In terms of reactivity, the smaller asphaltenes seemed to react faster, 

but this result could be due reduced mass transfer limitations for the smaller ones.. Despite these recent 

improvements, we do not have enough information to differentiate the residues. So, in a first approach, 

it is considered that the heteroatoms are distributed evenly in the different sub-fractions  

 

4.2 Parameter Estimation  

 

While the number of different species considered to be present in the reactor is 77, only six adsorption 

coefficients have been considered following the main lumps and gas: Asphaltenes, Resins, Aromatics, 

Saturates, NH3 and H2S. The number of reactions which might occur is 122 but only 17 apparent kinetic 

constants ( i
'k ) have been introduced to describe all reactions. In summary, 6 adsorption coefficients 

( )ib  and 17 apparent kinetic constants ( i
'k ) have been introduced in the kinetic networks, giving a total 

of 23 parameters for each section.  
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The kinetic and thermodynamic parameters were estimated for Buzurgan. Figure 5 shows the evolution 

profiles obtained by simulation of the model with the estimated parameters, and the experimental 

results. A good agreement is found between simulation and experimental results.  

 

Figure 5 - Evolution profiles of the different species versus the residence time for the Buzurgan VR 

(simulation results). a) Evolution of the SARA fractions; b) Evolution of the heteroatoms (S, N, Ni, V).  

 

Figure 6 shows the parity diagram between experimental and simulation results (all results for each 

lump are represented and not only the global ones, as in Figure 5). The parity diagram confirms the 

good agreement between experimental and model results. The model described the Buzurgan VR 

behaviour with good accuracy. 

 

Figure 6 - Parity diagram between experimental and model results for the Buzurgan VR (the model 

parameters were estimated with the Buzurgan experimental results). 

 

The estimated kinetic rates are given in Table 6. For the cracking, hydrodesulfuration and 

denitrogenation reactions, all kinetic constants vary between 1.10-3 and 1.4 m-2.s-1. For the 

demetallization and coke reactions all kinetic constants vary between 1.10-1 and 575 m-2.s -1except for 

reaction 1) ( NiAspAspNi +→ ) in the HDS section. This last is practically equal to zero, probably due 

to the size of the corresponding asphaltenes, too large to have an access to sites. In general the apparent 

kinetic constants are higher in the HDS section than the HDM section. Also, the vanadium apparent 

kinetic constant is greater than the nickel one, both for asphaltenes and resins.  

In comparison with the HDM section, the apparent kinetic constants of hydrodesulfurization are more 

or less the same in the HDS section for asphaltenes but are less important for resins and aromatics.  



 18 

This model kinetic network can differentiate between the saturated or aromatic fraction removal 

cracking reactions,. However the kinetic constants for both cracking types have been found similar 

except for the asphaltenes in the HDS section.  In these the apparent kinetic constants representative of 

cracking reactions are ten to twenty times greater  than in HDM section.  

 

 

 

Table 6– Estimated kinetic constants for the both sections. 

Table 7 – Adsorption constants estimated in the model for the different lumps. 

 

The estimated adsorption constants are given in 7. Stronger adsorption has been found for gas (H2S and 

NH3) and asphaltenes. The adsorption of saturates is lower. Also, the adsorption coefficients are higher 

for the HDM sections than the HDS section.  

 

4.4 Other feeds simulation – model validation 

The best way to validate the model is to simulate the behaviour of the other residues with the parameters 

estimated previously and compare them to experimental results. For these simulations the physical 

chemical properties that describe the residues have been changed through the SARA distribution and 

respective heteroatom content . The segment numbers sin  and the distributions of the asphaltenes and 

resins sub-fractions (see Table 1, Table 4 and Table 5) have been calculated. The heteroatom 

distributions have not been changed due to the lack of information.   

Figure 7 represents the simulation results and comparison with experimental results for the Arabian 

Light residue. The results are in quite good agreement with the experimental ones. Both the SARA 

fractions evolution and heteroatom profiles are relatively well described.  

 



 19 

Figure 7 - Evolution profiles of the different species versus the residence time for the Arabian Light VR 

(simulation results). a) Evolution of the SARA fractions; b) Evolution of the heteroatoms (S, N, Ni, V). 

 

The Djeno residue behavior was also simulated and the results are presented in Figure 8.  The 

simulation is less satisfactory than for the Arabian Light. These results were expected because the Djeno 

residue  is unusual and rarely conforms to the behavior of other residues. In the HDS section, the resin 

conversion and the saturates and aromatics contents are overestimated. For heteroatoms some 

discrepancies can also be observed mainly for nickel and sulfur. The removal of nickel is always 

overestimated. However the removal of sulfur is underestimated in the HDM section and overestimated 

in the HDS section.  

 

Figure 8 - Evolution profiles of the different species versus the residence time for the Djeno (simulation 

results). a) Evolution of the SARA fractions; b) Evolution of the heteroatoms (S, N, Ni, V). 

 

In this work, the SARA sub-fractions repartition parameters were changed but not those of the 

heteroatoms. Since all sub-fractions have the same kinetic constants and adsorption coefficients most of 

the differences observed will be linked to mass transfer resistance in catalyst. So, in the case of Djeno a 

better fit may be gained by distributing most of the sulfur into the smallest sub-fractions (to better adjust 

the HDM section), and most metals in the largest subfractions. 

 

Finally the Ural conversion simulation and the corresponding experimental results are shown in Figure 

9. Quite good results for the SARA fractions and fairly good results for the heteroatom profiles can be 

observed. A discrepancy is observed for sulfur, for which conversion is overestimated.   

 

Figure 9 - Evolution profiles of the different species versus the residence time for the Ural (simulation 

results). a) Evolution of the SARA fractions; b) Evolution of the heteroatoms (S, N, Ni, V). 
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CONCLUSIONS 

In this work a preliminary model was developed in order to predict the hydrotreating performance  for 

residues of different geographical origins. The simulation of the performance of two catalysts in 

sequence was achieved and the validation of the model is acceptable. 

The differentiation of performance due to the change in crude was obtained through the introduction of 

some crucial aspects in the model description, i.e.: i) introducing the diffusion and size of the molecules 

into the model for both sections; ii) subdividing asphaltenes and resins which allowed an improvement 

in the prediction of evolution of SARA fractions ; iii) creating a kinetic dependency on the feed 

properties seems to give better simulation results . 

To further improve the performance of the prediction obtained in the simulation, advances in 

characterization of the residue feeds are needed. For instance, in the present work it was proved that a 

better description of the molecules with heteroatoms (refer to Djeno case) could improve the ability to 

differentiate between the different residues and, consequently, to improve the simulation performance. 

Also, the coupling of complex kinetic networks model with a molecular reconstructed feed could 

present quite interesting results, despite the required computing time.  
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NOMENCLATURE 

sa : specific surface area of catalyst pellet (m2.m-3) 

sA : coefficient of the Scheibel correlation (-) 

ib : thermodynamic Langmuir coefficient of the specie i (m3.mol-1) 
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p
iC : concentration of the family i in the fluid inside the pellet at equilibrium with the adsorbed phase (mol. m-3) 

f
iC : concentration of the family i in the extra granular fluid phase (mol. m-3) 

: total concentration (mol.m-3) 

: effective diffusion coefficient (m2. s-1) 

 : Stephan-Maxwell binary species (i,j) diffusion coefficient (m2.s-1) 

0
ijD : Stephan-Maxwell binary segment (i,j) diffusion coefficient (m2. s-1) 

: bulk phase diffusion coefficient or translational diffusion coefficient (m2.s-1) 

k : Bolztmann constant (J.K-1) 

ik : kinetic constant for the reaction (m-2.s-1 ou m3.mol-1.m-2. s-1) 

'
ik : apparent kinetic constant for the reaction (m-2s-1) 

m
ik : mass transfer coefficient of the family i corresponding to the fluid phase (m.s-1) 

rK : viscous drag coefficient of the considered lump (-) 

pK : solute partition coefficient (-) 

: length of the cylindrical pellet  (m) 

iM : molecular weight of the specie i (kg.mol-1) 

nc : number of species (-) 

nd : number of deposits (adsorbed lumps) (-) 

TC

ijD
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iN : molar flux of  the family i (mol.m-2.s-1) 

0
iN : molar flux of  the segment i (mol.m-2.s-1) 

cokeN : number of coke molecules (-) 

sin : number of segments of the specie i , comparing to the elementary volume (-) 

 active site saturation concentration (mol.m-3 of solid)  

 
siteq : active site concentration ( of solid)  

iq  : concentration of the specie i in adsorbed phase  (sites)  (mol.m-3 of  

ir :  volumetric surface production rate of lump i (mol.m-3.m-2.s-1) 

pr : pore radius (m) 

R : gas constant (J.mol-1.K-1) 

cR  : catalyst pellet radius (m) 

: coke molecules radius (m) 

hR : molecule hydrodynamic radius (m) 

cS : section of the catalyst pellet (m2) 

Scatalyst : catalyst surface (m2) 

availableinitiallycS : initially available surface of catalyst (m2) 

coke,occupiedcS : occupied surface of catalyst (m2) 

T : temperature (K) 

:maxq

3m/mol

)solid
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cV : catalyst volume (m3) 

phase ragranularint,pV : intra granular volume (m3) 

f
ov : fluid velocity inside the reactor (m.s-1) 

: molecular volume of the specie i (m3.mol-1) 

 : molar volume of the elementary segment (m3.mol-1) 

: extra granular porosity (-) 

: intra granular porosity (-) 

p
iφ : volume fraction of the specie i in the intra granular solid phase (-) 

f
iφ : volume fraction of the specie i in the extra granular fluid phase (-) 

S
iφ : volume fraction of the coke, Vanadium or Nickel on the catalyst surface (-) 

Rτ : catalyst tortuosity (-) 

iρ : density (kg.m3) 

: viscosity of the fluid phase (Pa.s) 

λ : ratio between pore and molecule hydrodynamic radius (-) 

 

 

 

 

 

0ϑ

iε

pε
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