Hydrodesulfurization and hydrodemetallization of different origin vacuum residues : new modeling approach.

Abstract : In order to be able to upgrade the heaviest part of the crude oil one needs to remove several impurities, such as sulfur or metals. Residue hydrotreatment in fixed beds, under high hydrogen pressure can achieve high removal performances, with an industrial catalysts optimized staging. Despite the recent improvements, petroleum residues remain very difficult to describe and characterize in detail. Several kinetic models have been developed, but mostly they are feed dependant and their predictions are not satisfying for residues of different origins. Based on a recent study comparing residue properties and the differentiating physical-chemical properties responsible for reactivity, the present work develops a hydrotreatment kinetic model coupled with mass transfer in the catalyst which attempts to simulate the different residue performances. After estimation of kinetic parameters for a given residue, the model was validated for three other residues. This new model is able to take into account differences in residue characteristics and gives fairly good simulations of residues performances.
Document type :
Journal articles
Complete list of metadatas

Cited literature [28 references]  Display  Hide  Download

https://hal-ifp.archives-ouvertes.fr/hal-01005691
Contributor : Françoise Bertrand <>
Submitted on : Friday, June 13, 2014 - 10:47:14 AM
Last modification on : Thursday, June 20, 2019 - 12:36:03 PM
Long-term archiving on : Tuesday, April 11, 2017 - 7:02:10 AM

File

0024439-02.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01005691, version 1

Collections

Citation

Cristina Ferreira, Melaz Tayakout-Fayolle, Isabelle Guibard, Francisco Lemos. Hydrodesulfurization and hydrodemetallization of different origin vacuum residues : new modeling approach.. Fuel, Elsevier, 2014, 129, pp.267-277. ⟨hal-01005691⟩

Share

Metrics

Record views

1250

Files downloads

1126