G. G. Martens, G. B. Marin, J. A. Martens, P. A. Jacobs, and G. V. Baron, A Fundamental Kinetic Model for Hydrocracking of C8 to C12 Alkanes on Pt/US???Y Zeolites, Journal of Catalysis, vol.195, issue.2, pp.253-267, 2000.
DOI : 10.1006/jcat.2000.2993

E. Vale´ryvale´ry, D. Guillaume, K. Surla, P. Galtier, J. J. Verstraete et al., Kinetic Modeling of Acid Catalyzed Hydrocracking of Heavy Molecules:?? Application to Squalane, Industrial & Engineering Chemistry Research, vol.46, issue.14, pp.4755-4763, 2007.
DOI : 10.1021/ie061559w

D. Guillaume, E. Vale´ryvale´ry, J. J. Verstraete, K. Surla, P. Galtier et al., Single Event Kinetic Modelling without Explicit Generation of Large Networks: Application to Hydrocracking of Long Paraffins, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.66, issue.3, pp.399-422, 2011.
DOI : 10.2516/ogst/2011118

M. Mitsios, D. Guillaume, P. Galtier, and D. Schweich, Catalyst, Industrial & Engineering Chemistry Research, vol.48, issue.7, pp.3284-3292, 2009.
DOI : 10.1021/ie800974q

J. R. Shahrouzi, D. Guillaume, P. Rouchon, D. Costa, and P. , Stochastic Simulation and Single Events Kinetic Modeling: Application to Olefin Oligomerization, Industrial & Engineering Chemistry Research, vol.47, issue.13, pp.4308-4316, 2008.
DOI : 10.1021/ie071215l

G. Lozano-blanco, J. W. Thybaut, K. Surla, P. Galtier, and G. B. Marin, Single-Event Microkinetic Model for Fischer???Tropsch Synthesis on Iron-Based Catalysts, Industrial & Engineering Chemistry Research, vol.47, issue.16, pp.5879-5891, 2008.
DOI : 10.1021/ie071587u

G. Lozano-blanco, K. Surla, J. W. Thybaut, and G. B. Marin, Extension of the Single-Event Methodology to Metal Catalysis: Application to Fischer-Tropsch Synthesis, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.66, issue.3, pp.423-435, 2011.
DOI : 10.2516/ogst/2009075

H. Cochegrue, P. Gauthier, J. J. Verstraete, K. Surla, D. Guillaume et al., Reduction of Single Event Kinetic Models by Rigorous Relumping: Application to Catalytic Reforming, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.66, issue.3, pp.367-397, 2011.
DOI : 10.2516/ogst/2011122

L. J. Broadbelt, S. M. Stark, and M. T. Klein, Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates, Industrial & Engineering Chemistry Research, vol.33, issue.4, pp.790-799, 1994.
DOI : 10.1021/ie00028a003

D. Witt, M. J. Dooling, D. J. Broadbelt, and L. J. , Computer Generation of Reaction Mechanisms Using Quantitative Rate Information:?? Application to Long-Chain Hydrocarbon Pyrolysis, Industrial & Engineering Chemistry Research, vol.39, issue.7, pp.2228-2237, 2000.
DOI : 10.1021/ie990608k

D. K. Liguras, M. Neurock, M. T. Klein, S. M. Stark, C. Libanati et al., Monte Carlo simulation of complex reactive mixture: An FCC case study, AIChE Symposium Series, vol.88, pp.68-75, 1992.

I. Merdrignac and D. Espinat, Physicochemical Characterization of Petroleum Fractions: the State of the Art, Oil & Gas Science and Technology - Revue de l'IFP, vol.62, issue.1, pp.7-32, 2007.
DOI : 10.2516/ogst:2007002

D. Hudebine and J. J. Verstraete, Molecular reconstruction of LCO gasoils from overall petroleum analyses reconstruction of vacuum gasoils, Preprints of Papers ? Am, Chem. Eng. Sci. Chem. Soc. Division Fuel Chem, vol.59, issue.49, pp.4755-4763, 2004.

J. J. Verstraete, P. Schnongs, H. Dulot, and D. Hudebine, Molecular reconstruction of heavy petroleum residue fractions, Chemical Engineering Science, vol.65, issue.1, pp.304-312, 2010.
DOI : 10.1016/j.ces.2009.08.033

L. P. Oliveira, T. Vazquez, A. Verstraete, J. J. Kolb, and M. , Molecular Reconstruction of Petroleum Fractions: Application to Vacuum Residues from Different Origins, Energy & Fuels, vol.27, issue.7, pp.3622-3641, 2013.
DOI : 10.1021/ef300768u

D. Hudebine, J. J. Verstraete, and T. Chapus, Statistical Reconstruction of Gas Oil Cuts, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.66, issue.3, pp.461-477, 2011.
DOI : 10.2516/ogst/2009047

M. Neurock, A. Nigam, D. M. Trauth, and M. T. Klein, Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms, Chemical Engineering Science, vol.49, issue.24, pp.4153-4177, 1994.
DOI : 10.1016/S0009-2509(05)80013-2

D. M. Trauth, S. M. Stark, T. F. Petti, M. Neurock, and M. T. Klein, Representation of the Molecular Structure of Petroleum Resid through Characterization and Monte Carlo Modeling, Energy & Fuels, vol.8, issue.3, pp.576-580, 1994.
DOI : 10.1021/ef00045a010

D. Hudebine and J. J. Verstraete, Reconstruction of Petroleum Feedstocks by Entropy Maximization. Application to FCC Gasolines, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.66, issue.3, pp.437-460, 2011.
DOI : 10.2516/ogst/2011110

K. M. 29-van-geem, D. Hudebine, M. Reyniers, F. Wahl, J. J. Verstraete et al., Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices, Computers & Chemical Engineering, vol.31, issue.9, pp.1020-1034, 2007.
DOI : 10.1016/j.compchemeng.2006.09.001

K. M. 30-van-geem, M. Reyniers, and G. B. Marin, Challenges of Modeling Steam Cracking of Heavy Feedstocks, Oil & Gas Science and Technology - Revue de l'IFP, vol.63, issue.1, pp.79-94, 2008.
DOI : 10.2516/ogst:2007084

C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

M. M. Boduszynski, Composition of heavy petroleums. 2. Molecular characterization, Energy & Fuels, vol.2, issue.5, pp.597-613, 1988.
DOI : 10.1021/ef00011a001

A. M. Mckenna, G. T. Blakney, F. Xian, P. B. Glaser, R. P. Rodgers et al., Heavy Petroleum Composition. 2. Progression of the Boduszynski Model to the Limit of Distillation by Ultrahigh-Resolution FT-ICR Mass Spectrometry, Energy & Fuels, vol.24, issue.5, pp.2939-2946, 2010.
DOI : 10.1021/ef1001502

E. Y. Sheu, Petroleum AsphalteneProperties, Characterization, and Issues, Energy & Fuels, vol.16, issue.1, pp.74-82, 2002.
DOI : 10.1021/ef010160b

I. A. Wiehe, The Pendant-Core Building Block Model of Petroleum Residua, Energy & Fuels, vol.8, issue.3, pp.536-544, 1994.
DOI : 10.1021/ef00045a003

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, vol.22, issue.4, pp.403-434, 1976.
DOI : 10.1016/0021-9991(76)90041-3

D. T. Gillespie, Stochastic Simulation of Chemical Kinetics, Annual Review of Physical Chemistry, vol.58, issue.1, pp.35-55, 2007.
DOI : 10.1146/annurev.physchem.58.032806.104637

D. T. Gillespie, A rigorous derivation of the chemical master equation, Physica A: Statistical Mechanics and Its Applications, pp.404-425, 1992.

J. Schweitzer and S. Kressmann, Ebullated bed reactor modeling for residue conversion, Chemical Engineering Science, vol.59, issue.22-23, pp.5637-5645, 2004.
DOI : 10.1016/j.ces.2004.08.018

L. P. Oliveira, J. J. Verstraete, and M. Kolb, Moleculebased kinetic modeling by Monte Carlo methods for heavy petroleum conversion, Science China Chemistry, pp.10-1007, 2013.

L. P. Oliveira, J. J. Verstraete, and M. Kolb, Simulating vacuum residue hydroconversion by means of Monte-Carlo techniques, Catalysis Today, vol.220, issue.222, 2013.
DOI : 10.1016/j.cattod.2013.08.011