M. Alkasrawi, A. Rudolf, and G. Lide´nlide´n, Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce, Enzyme Microb. Technol, vol.38, pp.279-287, 2006.

A. Andersone, A. Arshanitsa, T. Dizhbite, G. Dobele, V. Kampars et al., The composition and fuel characteristics of non-hydrolized residues from wheat straw ethanol production, Proceedings of the 15th International Symposium on Wood, Fiber and Pulping Chemistry, pp.105-111, 2009.

J. E. Bailey, Towards a science of metabolic engineering, Science, vol.252, pp.1668-1675, 1991.

O. Bengtsson, B. Hahn-ha¨gerdalha¨gerdal, and M. Gorwa-grauslund,

A. Berlin, N. Gilkes, D. Kilburn, R. Bura, A. Markov et al., Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates-evidence for the role of accessory enzymes, Enzyme Microb. Technol, vol.37, pp.175-184, 2005.

E. Boles and M. Keller, Novel specific arabinose transporter from the yeast Pichia stipitis, and uses thereof, 2006.

C. Bro, S. Knudsen, B. Regensberg, L. Olsson, and J. Nielsen,

, Appl. Environ. Microbiol, vol.71, pp.6465-6472

C. Fonseca, K. Olofsson, C. Ferreira, D. Runquist, L. L. Fonseca et al., Enzyme Microb. Technol, vol.48, pp.518-525, 2011.

M. Galbe, P. Sassner, A. Wingren, and G. Zacchi, Process Engineering Economics of Bioethanol Production, vol.108, pp.303-327, 2007.

G. Sanchez, R. Hahn-ha¨gerdalha¨gerdal, B. Gorwa-grauslund, and M. F. , Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae, Biotechnol. Biofuels, vol.9, p.19, 2010.

G. Sanchez, R. Karhumaa, K. Fonseca, C. Sanchez-nogue, V. Almeida et al., Improved xylose and arabinose utilization by an industrial recombinant Saccharamyces cerevisiae strain using evolutionary engineering, Appl. Microbiol. Biotechnol, vol.3, pp.937-953, 2007.

D. Heer and U. Sauer, Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain, Microb. Biotechnol, vol.1, pp.497-506, 2008.

D. Heer, D. Heine, and U. Sauer, Resistence of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxidoreductases, Appl. Environ. Microb, vol.75, pp.7631-7638, 2009.

M. E. Himmel, S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos et al., Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science, vol.315, pp.804-807, 2007.

K. Karhumaa, B. Wiedemann, B. Hahn-ha¨gerdalha¨gerdal, E. Boles, and M. F. Gorwa-grauslund, Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains, Microb. Cell Fact, vol.5, p.18, 2006.

N. Koch, O. Kensch, and K. Schulze-pellengahr, Polypeptides having cellobiohydrolase II activity, 2009.

P. Ko¨tterko¨tter and M. Ciriacy, Xylose fermentation by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol, vol.38, pp.776-783, 1993.

M. W. Lau, C. Gunawan, V. Balan, and B. E. Dale, Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production, Biotechnol. Biofuels, vol.3, p.11, 2010.

M. J. Leandro, P. Goncalves, and I. Spencer-martins, Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose H+ symporter, Biochem. J, vol.395, pp.543-549, 2006.

S. Y. Lee, D. Lee, and T. Y. Kim, Systems biotechnology for strain improvement, Trends Biotechnol, vol.23, pp.349-358, 2005.

W. Lee, M. D. Kim, Y. W. Ryu, L. Bisson, and J. H. Seo, Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol, vol.60, pp.186-191, 2002.

A. Margeot, B. Hahn-ha¨gerdalha¨gerdal, M. Edlund, R. Slade, and F. Monot, New improvements for lignocellulosic ethanol, Curr. Opin. Biotechnol, vol.20, pp.372-380, 2009.

D. Martinez, Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina), Nature Biotechnol, vol.26, pp.553-560, 2008.

K. Olofsson, M. Bertilsson, and G. Lide´nlide´n, Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae, Biotechnol. Biofuels, vol.1, pp.112-120, 2008.

K. Olofsson, B. Palmqvist, G. Lide´nlide´n, K. Olofsson, M. Wiman et al., Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production, Biotechnol. Biofuels, vol.3, pp.168-175, 2010.

L. Olsson and B. Hahn-ha¨gerdalha¨gerdal, Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates, Process Biochem, vol.28, pp.249-257, 1993.

S. Ostergaard, L. Olsson, M. Johnston, and J. Nielsen, Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network, Nature Biotechnol, vol.18, pp.1283-1286, 2000.

E. Reifenberger, E. Boles, and M. Ciriacy, Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression, Eur. J. Biochem, vol.245, pp.324-333, 1997.

D. Runquist, C. Fonseca, P. Ra?dstro¨mra?dstro¨ra?dstro¨m, I. Spencer-martins, and B. Hahn-ha¨gerdalha¨gerdal, Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol, vol.82, pp.123-130, 2009.

D. Runquist, P. Ra?dstro¨mra?dstro¨ra?dstro¨m, B. Hahn-ha¨gerdalha¨gerdal, A. Saloheimo, J. Rauta et al., Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases, Appl. Microbiol. Biotechnol, vol.3, pp.1041-1052, 2007.

U. Sauer, Evolutionary engineering for industrially important microbial phenotypes, Adv. Biochem. Eng./Biotechnol, vol.73, pp.129-169, 2001.

R. Slade, N. Shah, A. Bauen, R. Slade, N. Shah et al., Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS6054, Biotechnol. Biofuels, vol.2, pp.319-326, 2003.

B. Wiedemann and E. Boles, Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae, Appl. Environ. Microbiol, vol.74, pp.2043-2050, 2008.