N. Aro, T. Pakula, and M. Penttila, Transcriptional regulation of plant cell wall degradation by filamentous fungi, FEMS Microbiology Reviews, vol.29, issue.4, pp.719-739, 2005.
DOI : 10.1016/j.femsre.2004.11.006

S. Horn, G. Vaaje-kolstad, B. Westereng, and V. Eijsink, Novel enzymes for the degradation of cellulose, Biotechnology for Biofuels, vol.5, issue.1, p.45, 2012.
DOI : 10.1186/1754-6834-5-45

R. Singhania, R. Sukumaran, A. Patel, C. Larroche, and A. Pandey, Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases, Enzyme and Microbial Technology, vol.46, issue.7, pp.541-549, 2010.
DOI : 10.1016/j.enzmictec.2010.03.010

Z. Barta, K. Kovacs, K. Reczey, and G. Zacchi, Process Design and Economics of On-Site Cellulase Production on Various Carbon Sources in a Softwood-Based Ethanol Plant, Enzyme Research, vol.84, issue.8, p.734182, 2010.
DOI : 10.1016/0960-8524(91)90099-6

F. Kazi, J. Fortman, R. Anex, D. Hsu, A. Aden et al., Techno-economic comparison of process technologies for biochemical ethanol production from corn stover, Fuel, vol.89, pp.20-28, 2010.
DOI : 10.1016/j.fuel.2010.01.001

D. Klein-marcuschamer, P. Oleskowicz-popiel, B. Simmons, and H. Blanch, The challenge of enzyme cost in the production of lignocellulosic biofuels, Biotechnology and Bioengineering, vol.101, issue.93, pp.1083-1087, 2012.
DOI : 10.1002/bit.24370

E. Jourdier, B. Chaabane, F. Poughon, L. Larroche, C. Monot et al., Simple kinetic model of cellulase production by Trichoderma reesei for productivity or yield maximization, Chem Eng Trans, vol.27, pp.313-318, 2012.

J. Tolan and B. Foody, Cellulase from submerged fermentation In Recent Progress in Bioconversion of Lignocellulosics, pp.41-67, 1999.

E. Jourdier, L. Poughon, C. Larroche, F. Monot, B. Chaabane et al., A new stoichiometric miniaturization strategy for screening of industrial microbial strains: application to cellulase hyper-producing Trichoderma reesei strains, Microbial Cell Factories, vol.11, issue.1, p.70, 2012.
DOI : 10.1016/0141-0229(88)90012-9

I. Persson, F. Tjerneld, and B. Hahn-hägerdal, Fungal cellulolytic enzyme production: A review, Process Biochemistry, vol.26, issue.2, pp.65-74, 1991.
DOI : 10.1016/0032-9592(91)80019-L

J. Pourquié, M. Warzywoda, F. Chevron, D. Thery, D. Lonchamp et al., Scale up of cellulase production and utilization, FEMS Symposium n°43: Biochemistry and Genetics of Cellulose Degradation, pp.71-86

M. Warzywoda, E. Larbre, and J. Pourquié, Production and characterization of cellulolytic enzymes from Trichoderma reesei grown on various carbon sources, Bioresource Technology, vol.39, issue.2, pp.125-130, 1992.
DOI : 10.1016/0960-8524(92)90130-P

G. Philippidis, J. Baker, and R. Overend, Cellulase production technology In Enzymatic Conversion of Biomass for Fuels Production, pp.188-217, 1994.

H. Esterbauer, W. Steiner, I. Labudova, A. Hermann, and M. Hayn, Production of Trichoderma cellulase in laboratory and pilot scale, Bioresource Technology, vol.36, issue.1, pp.51-65, 1991.
DOI : 10.1016/0960-8524(91)90099-6

M. Dashtban, M. Maki, K. Leung, C. Mao, and W. Qin, Cellulase activities in biomass conversion: measurement methods and comparison, Critical Reviews in Biotechnology, vol.581, issue.4, pp.302-309, 2010.
DOI : 10.1016/0165-022X(88)90040-1

T. Juhasz, Z. Szengyel, K. Reczey, M. Siika-aho, and L. Viikari, Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources, Process Biochemistry, vol.40, issue.11, pp.3519-3525, 2005.
DOI : 10.1016/j.procbio.2005.03.057

H. Jun, T. Kieselbach, and L. Jonsson, Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source, Microbial Cell Factories, vol.10, issue.1, p.68, 2011.
DOI : 10.1016/0168-1656(92)90074-J

L. Olsson, T. Christensen, K. Hansen, and E. Palmqvist, Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30, Enzyme and Microbial Technology, vol.33, issue.5, pp.612-619, 2003.
DOI : 10.1016/S0141-0229(03)00181-9

B. Sipos, Z. Benko, D. Dienes, K. Reczey, and L. Viikari, Characterisation of Specific Activities and Hydrolytic Properties of Cell-Wall-Degrading Enzymes Produced by Trichoderma reesei Rut C30 on Different Carbon Sources, Applied Biochemistry and Biotechnology, vol.25, issue.86, pp.347-364, 2010.
DOI : 10.1007/s12010-009-8824-4

H. Xiong, O. Turunen, O. Pastinen, M. Leisola, and N. Von-weymarn, Improved xylanase production by Trichoderma reesei grown on l-arabinose and lactose or d-glucose mixtures, Applied Microbiology and Biotechnology, vol.64, issue.3, pp.353-358, 2004.
DOI : 10.1007/s00253-003-1548-4

H. Xiong, N. Von-weymarn, O. Turunen, M. Leisola, and O. Pastinen, Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates, Bioresource Technology, vol.96, issue.7, pp.753-759, 2005.
DOI : 10.1016/j.biortech.2004.08.007

D. Ballerini, J. Desmarquest, J. Pourquié, F. Nativel, and M. Rebeller, Ethanol production from lignocellulosics: Large scale experimentation and economics, Bioresource Technology, vol.50, issue.1, pp.17-23, 1994.
DOI : 10.1016/0960-8524(94)90215-1

M. Ike, J. Park, M. Tabuse, and K. Tokuyasu, ) by Continuous-Feed Cultivation Using Soluble Sugars, Bioscience, Biotechnology, and Biochemistry, vol.77, issue.1, pp.161-166, 2013.
DOI : 10.1128/AEM.02746-09

H. Durand, M. Clanet, and G. Tiraby, Genetic improvement of Trichoderma reesei for large scale cellulase production, Enzyme and Microbial Technology, vol.10, issue.6, pp.341-346, 1988.
DOI : 10.1016/0141-0229(88)90012-9

T. Ghose, Measurement of cellulase activities, Pure and Applied Chemistry, vol.59, issue.2, pp.257-268, 1987.
DOI : 10.1351/pac198759020257

T. Ghose and V. Bisaria, Measurement of hemicellulase activities: Part I Xylanases, Pure and Applied Chemistry, vol.59, issue.12, pp.1739-1752, 1987.
DOI : 10.1351/pac198759121739

B. Seiboth, S. Herold, C. Kubicek, J. Chen, and Q. P. Netherlands, Metabolic Engineering of Inducer Formation for Cellulase and Hemicellulase Gene Expression in Trichoderma reesei, Reprogramming Microbial Metabolic Pathways, pp.367-390
DOI : 10.1007/978-94-007-5055-5_18

M. Mandels and E. Reese, Induction of cellulase in fungi by cellobiose, J Bacteriol, vol.79, pp.816-826, 1960.

C. Fritscher, R. Messner, and C. Kubicek, Cellobiose metabolism and cellobiohydrolase I biosynthesis by Trichoderma reesei, Experimental Mycology, vol.14, issue.4, pp.405-415, 1990.
DOI : 10.1016/0147-5975(90)90063-Y

C. Kubicek, R. Messner, F. Gruber, M. Mandels, and E. Kubicek-pranz, Triggering of cellulase biosynthesis by cellulose in Trichoderma reesei Involvement of a constitutive, sophorose-inducible, glucose-inhibited beta-diglucoside permease, J Biol Chem, vol.268, pp.19364-19368, 1993.

Q. Zhou, J. Xu, Y. Kou, X. Lv, X. Zhang et al., Differential Involvement of ??-Glucosidases from Hypocrea jecorina in Rapid Induction of Cellulase Genes by Cellulose and Cellobiose, Eukaryotic Cell, vol.11, issue.11, pp.1371-1381, 2012.
DOI : 10.1128/EC.00170-12

Y. Morikawa, T. Ohashi, O. Mantani, and H. Okada, Cellulase induction by lactose in Trichoderma reesei PC-3-7, Applied Microbiology and Biotechnology, vol.160, issue.1-2, pp.106-111, 1995.
DOI : 10.1007/BF00164488

M. Ilmen, A. Saloheimo, M. Onnela, and M. Penttila, Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei

T. Pakula, K. Salonen, J. Uusitalo, and M. Penttila, The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei, Microbiology, vol.151, issue.1, pp.135-143, 2005.
DOI : 10.1099/mic.0.27458-0

R. Bura, R. Chandra, and J. Saddler, Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar, Biotechnology Progress, vol.94, issue.124, pp.315-322, 2009.
DOI : 10.1002/btpr.98

J. Hu, V. Arantes, and J. Saddler, The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?, Biotechnology for Biofuels, vol.4, issue.1, p.36, 2011.
DOI : 10.1002/btpr.33

J. Zhang, M. Tang, and L. Viikari, Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases, Bioresource Technology, vol.121, pp.8-12, 2012.
DOI : 10.1016/j.biortech.2012.07.010

Z. Benko, M. Siika-aho, L. Viikari, and K. Reczey, Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates, Enzyme and Microbial Technology, vol.43, issue.2, pp.109-114, 2008.
DOI : 10.1016/j.enzmictec.2008.03.005

R. Kumar and C. Wyman, Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies, Biotechnology Progress, vol.24, issue.93, pp.302-314, 2009.
DOI : 10.1002/btpr.102

J. Shi, M. Ebrik, Y. B. Garlock, R. Balan, V. Dale et al., Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments, Bioresource Technology, vol.102, issue.24, pp.11080-11088, 2011.
DOI : 10.1016/j.biortech.2011.04.003

Q. Qing and C. Wyman, Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase, Bioresource Technology, vol.102, issue.2, pp.1359-1366, 2011.
DOI : 10.1016/j.biortech.2010.09.001

Q. Qing, Y. B. Wyman, and C. , Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes, Bioresource Technology, vol.101, issue.24, pp.9624-9630, 2010.
DOI : 10.1016/j.biortech.2010.06.137

Q. Qing and C. Wyman, Supplementation with xylanase and ??-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover, Biotechnology for Biofuels, vol.4, issue.1, p.18, 2011.
DOI : 10.1515/hfsg.1997.51.1.27

P. Penttilä, A. Várnai, J. Pere, T. Tammelin, L. Salmén et al., Xylan as limiting factor in enzymatic hydrolysis of nanocellulose, Bioresource Technology, vol.129, pp.135-141, 2013.
DOI : 10.1016/j.biortech.2012.11.017

A. Várnai, L. Huikko, J. Pere, M. Siika-aho, and L. Viikari, Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood, Bioresource Technology, vol.102, issue.19, pp.9096-9104, 2011.
DOI : 10.1016/j.biortech.2011.06.059

D. Gao, N. Uppugundla, S. Chundawat, X. Yu, S. Hermanson et al., Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides, Biotechnology for Biofuels, vol.4, issue.1, p.5, 2011.
DOI : 10.1016/j.biortech.2007.09.064

H. Billard, A. Faraj, L. Ferreira, N. Menir, S. Heiss-blanquet et al., Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw, Biotechnology for Biofuels, vol.5, issue.1, p.9, 2012.
DOI : 10.1021/ac60147a030

G. Banerjee, S. Car, J. Scott-craig, M. Borrusch, and J. Walton, Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations, Biotechnology for Biofuels, vol.3, issue.1, p.22, 2010.
DOI : 10.1186/1754-6834-3-22

R. Singhania, A. Patel, R. Sukumaran, C. Larroche, and A. Pandey, Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production, Bioresource Technology, vol.127, pp.500-507, 2013.
DOI : 10.1016/j.biortech.2012.09.012

I. Herpoel-gimbert, A. Margeot, A. Dolla, G. Jan, D. Molle et al., Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains, Biotechnology for Biofuels, vol.1, issue.1, p.18, 2008.
DOI : 10.1186/1754-6834-1-18

URL : https://hal.archives-ouvertes.fr/hal-00473787

Z. Rahman, Y. Shida, T. Furukawa, Y. Suzuki, H. Okada et al., Cellulase and Xylanase Promoters through Homologous Recombination for Enhanced Production of Extracellular ??-Glucosidase I, Bioscience, Biotechnology, and Biochemistry, vol.73, issue.5, pp.1083-1089, 2009.
DOI : 10.1271/bbb.80852

J. Zhang, Y. Zhong, X. Zhao, and T. Wang, Development of the cellulolytic fungus Trichoderma reesei strain with enhanced ??-glucosidase and filter paper activity using strong artifical cellobiohydrolase 1 promoter, Bioresource Technology, vol.101, issue.24, pp.9815-9818, 2010.
DOI : 10.1016/j.biortech.2010.07.078

B. Wang and L. Xia, High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei, Bioresource Technology, vol.102, issue.6, pp.4568-4572, 2011.
DOI : 10.1016/j.biortech.2010.12.099

H. Nakazawa, T. Kawai, N. Ida, Y. Shida, Y. Kobayashi et al., Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus ??-glucosidase 1 for efficient biomass conversion, Biotechnology and Bioengineering, vol.101, issue.1, pp.92-99, 2012.
DOI : 10.1002/bit.23296

L. Ma, J. Zhang, G. Zou, C. Wang, and Z. Zhou, Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens, Enzyme and Microbial Technology, vol.49, issue.4, pp.366-371, 2011.
DOI : 10.1016/j.enzmictec.2011.06.013

M. Dashtban and W. Qin, Overexpression of an exotic thermotolerant ??-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw, Microbial Cell Factories, vol.11, issue.1, p.63, 2012.
DOI : 10.1111/j.1365-2672.2009.04362.x

C. Ayrinhac, A. Margeot, N. Ferreira, B. Chaabane, F. Monot et al., Improved Saccharification of Wheat Straw for Biofuel Production Using an Engineered Secretome of Trichoderma reesei, Organic Process Research & Development, vol.15, issue.1, pp.275-278, 2011.
DOI : 10.1021/op100218a

O. Lowry, N. Rosebrough, A. Farr, and R. Randall, Protein measurement with the Folin phenol reagent, J Biol Chem, vol.193, pp.265-275, 1951.

G. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Analytical Chemistry, vol.31, issue.3, pp.426-428, 1959.
DOI : 10.1021/ac60147a030

Z. Xiao, R. Storms, and A. Tsang, Microplate-based filter paper assay to measure total cellulase activity, Biotechnology and Bioengineering, vol.160, issue.108, pp.832-837, 2004.
DOI : 10.1002/bit.20286

. Jourdier, Cellulase activity mapping of Trichoderma reesei cultivated in sugar mixtures under fed-batch conditions, Biotechnology for Biofuels, vol.6, issue.1, p.79, 2013.
DOI : 10.1186/1754-6834-6-79

URL : https://hal.archives-ouvertes.fr/hal-00905448