D. Busby and M. Feraille, Adaptive design of experiments for calibration of complex simulators ??? An application to uncertainty quantification of a mature oil field, Journal of Physics: Conference Series, vol.135, issue.1, pp.10-1088, 2008.
DOI : 10.1088/1742-6596/135/1/012026

D. Busby, Hierarchical adaptive experimental design for Gaussian process emulators, Reliability Engineering & System Safety, vol.94, issue.7, pp.1183-1193, 2009.
DOI : 10.1016/j.ress.2008.07.007

N. A. Cressie, Statistics for Spatial Data, 1993.

K. T. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, 2006.
DOI : 10.1201/9781420034899

M. Feraille and A. Marrel, Prediction under Uncertainty on a Mature Field, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.67, issue.2, 2012.
DOI : 10.2516/ogst/2011172

URL : https://hal.archives-ouvertes.fr/hal-00735123

C. J. Geyer, Practical Markov chain Monte Carlo (with discussion), Stat. Sci, vol.7, 1992.
DOI : 10.1214/ss/1177011137

URL : http://projecteuclid.org/download/pdf_1/euclid.ss/1177011137

N. Hansen, The CMA Evolution Strategy: A Comparing Review, in Towards a new evolutionary computation Advances in estimation of distribution algorithms, 2006.

A. Jourdan, Analyse statistique et e´chantillonnagee´chantillonnage d'expe´riencesexpe´riences simuleés, Dissertation, 2000.

M. C. Kennedy and A. O-'hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.3, pp.425-464, 2001.
DOI : 10.1111/1467-9868.00294

M. D. Mckay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in M. Feraille / An Optimization Strategy Based on the Maximization of Matching-Targets' Probability for Unevaluated Results the analysis of output from a computer code, Technometrics, vol.21, pp.239-245, 1979.

A. Marrel, Mise en oeuvre et utilisation du me´tamodè le processus Gaussien pour l'analyse de sensibilite´desensibilite´demodè les nume´riquesnume´riques, 2008.

G. Matheron, Principles of geostatistics, Economic Geology, vol.58, issue.8, 1963.
DOI : 10.2113/gsecongeo.58.8.1246

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and Analysis of Computer Experiments, Statistical Science, vol.4, issue.4, pp.409-423, 1989.
DOI : 10.1214/ss/1177012413

C. Scheidt, I. Zabalza-mezghani, M. Feraille, and D. Collombier, Toward a Reliable Quantification of Uncertainty on Production Forecasts: Adaptive Experimental Designs, Oil & Gas Science and Technology - Revue de l'IFP, vol.62, issue.2, pp.207-224, 2007.
DOI : 10.2516/ogst:2007018

M. Schonlau, D. Canada, and A. Tarantola, Computer Experiments and Global Optimization Inverse Problem Theory and Methods for Model Parameter Estimation, 1997.

E. Vazquez and J. Bect, Convergence properties of the expected improvement algorithm with fixed mean and covariance functions, Journal of Statistical Planning and Inference, vol.140, issue.11, 2010.
DOI : 10.1016/j.jspi.2010.04.018

URL : https://hal.archives-ouvertes.fr/hal-00217562

J. Villemonteix, E. Vazquez, M. Sidorkiewicz, and E. Walter, Global optimization of expensive-to-evaluate functions: an empirical comparison of two sampling criteria, Journal of Global Optimization, vol.10, issue.2, pp.509-534, 2009.
DOI : 10.1007/s10898-008-9313-y

URL : https://hal.archives-ouvertes.fr/hal-00354656