An Optimization Strategy Based on the Maximization of Matching-Targets' Probability for Unevaluated Results.

Abstract : TheMaximization ofMatching-Targets' Probability for Unevaluated Results (MMTPUR), technique presented in this paper, is based on the classical probabilistic optimization framework. The numerical function values that have not been evaluated are considered as stochastic functions. Thus, a Gaussian process uncertainty model is built for each required numerical function result (i.e., associated with each specified target) and is used to estimate probability density functions for unevaluated results. Parameter posterior distributions, used within the optimization process, then take into account these probabilities. This approach is particularly adapted when, getting one evaluation of the numerical function is very time consuming. In this paper, we provide a detailed outline of this technique. Finally, several test cases are developed to stress its potential.
Type de document :
Article dans une revue
Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, Institut Français du Pétrole, 2013, 68 (3), pp.545-556. 〈10.2516/ogst/2012079〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal-ifp.archives-ouvertes.fr/hal-00864214
Contributeur : Françoise Bertrand <>
Soumis le : vendredi 20 septembre 2013 - 15:31:28
Dernière modification le : mardi 15 mai 2018 - 14:50:02
Document(s) archivé(s) le : samedi 21 décembre 2013 - 04:31:20

Fichier

A9R6D38.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Mathieu Feraille. An Optimization Strategy Based on the Maximization of Matching-Targets' Probability for Unevaluated Results.. Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, Institut Français du Pétrole, 2013, 68 (3), pp.545-556. 〈10.2516/ogst/2012079〉. 〈hal-00864214〉

Partager

Métriques

Consultations de la notice

189

Téléchargements de fichiers

104