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Résumé — Questions ouvertes sur la supervision énergétique des véhicules hybrides électriques :

une approche unifiée par la théorie de la commande optimale — Cet article a pour objet la gestion

optimale de l’énergie pour un système de propulsion hybride. Le problème traditionnel de répartition

de la puissance est modifié avec des nouveaux objectifs d’optimisation et des nouvelles contraintes. Les

nouveaux objectifs d’optimisation incluent les émissions de polluants et le vieillissement de la batterie.

Les contraintes sont modifiées pour prendre en compte des batteries à recharge externe (hybrides

plug-in). De plus, des problèmes spécifiques sont traités avec une modélisation plus détaillée, qui

comprend : les dynamiques thermiques du moteur à combustion interne et du catalyseur, pour prendre

en compte les effets du démarrage à froid ; les dynamiques thermiques des systèmes de récupération

de la chaleur à l’échappement ; la température de la batterie, qui a un effet sur ses performances et

son vieillissement. L’article montre comment tous ces problèmes peuvent être traités de façon cohé-

rente avec une extension de l’approche ECMS (Equivalent Consumption Minimization Strategy, ou

stratégie de minimisation de la consommation équivalente), qui est une implémentation du principe du

minimum de Pontryagin formulé dans la théorie de la commande optimale. Des définitions étendues

de la fonction Hamiltonienne et des multiplicateurs de Lagrange sont présentées, ainsi que les résultats

des optimisations illustrant les bénéfices de cette approche unifiée et ses limites dans l’implémentation

en ligne.

Abstract — Open Issues in Supervisory Control of Hybrid Electric Vehicles: A Unified Approach

Using Optimal Control Methods — Energy management of hybrid propulsion systems is considered,

presenting new issues that extend the energy management role beyond the standard torque splitting

to maximize system efficiency. The new issues include additional optimization criteria, constraints

and relevant dynamics to deal with. New optimization criteria in addition the sole fuel consumption

minimization include engine-out pollutant emissions and battery aging. State constraints are modified

to account for plug-in hybrid vehicles. Moreover, specific supervisory control problems are recognized

to need additional state variables. The latter comprise: engine and catalyst temperature to deal with

engine warm-up effects on fuel consumption and after-catalyst emissions; thermal dynamics of heat

recovery systems (Rankine or Thermo-Electric Generators, TEGs); and battery temperature, which

influences battery performance and aging. It is shown that all these control problems can be treated

in an unified fashion by extending the well-known ECMS (Equivalent Consumption Minimization
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Strategy), which is an implementation of Pontryagin Minimum Principle (PMP) as formulated by

optimal control theory. Extended definitions of the Hamiltonian function and Lagrange multipliers

are introduced. Optimization runs performed off line are reported. Results show the benefits of the

proposed unified approach and enlighten some first online implementation issues.

INTRODUCTION

It is well known that hybrid electric vehicles (HEV) may be

significantly more efficient than conventional (engine-only)

vehicles. This is due in part to their capability of recov-

ering braking energy and in part to the additional degree

of freedom due to the presence of two energy sources on

board of the vehicle (electrical energy storage and fuel tank).

The presence of this additional degree of freedom introduces

the necessity of an appropriate energy management strategy

in order to exploit it effectively. Many methods have been

proposed to design an energy management strategy (see the

overview in [1]), including heuristic strategies, numerical

optimization methods and optimal control theory. In partic-

ular, thanks to some specific properties of the HEV problem,

it is possible to easily implement solutions based on optimal

control theory. The most well known case is the Equiva-

lent Consumption Minimization Strategy (ECMS), based on

Pontryagin’s Minimum Principle (PMP) [2-5]. Most of the

work related to ECMS focuses on its basic application, i.e.

minimizing fuel consumption using a simple, quasi-static

vehicle model. The objective of this paper is to provide an

overview of the current research activities aimed at expand-

ing the range of use of the ECMS approach, either by tar-

geting multiple optimization objectives or by improving the

modeling detail. The basic theory is recalled in Section 1,

then several cases are examined in the following sections,

starting with the standard formulation in Section 2 and then

adapting the problem formulation to a specific goal.

1 MINIMUM PRINCIPLE FOR A GENERAL OPTIMAL
CONTROL PROBLEM

Consider a system described by the generic state equation:

ẋ = f (x, u, t) (1)

where x is the state vector, u the control vector, t the

time. Consider the optimal control problem of finding the

sequence of controls u∗(t) that minimizes the cost function:

J =

∫ t f

0

L(x, u, t)dt (2)

subject to control and state constraints, as well as prescribed

initial conditions on the system state.

Define the Hamiltonian function as:

H(x, u, t) = L(x, u, t) + λT (t) · f (x, u, t) (3)

where λ(t) is the problem co-state vector (with same dimen-

sion as the state vector). Pontryagin’s minimum principle

states that the optimal solution u∗(t) is such that the follow-

ing conditions are satisfied:

– at each time, the optimal solution of the global problem

is also the solution to the instantaneous problem of mini-

mizing the Hamiltonian function, i.e.:

u∗(t) = arg min
u

(H(x, u, t)) (4)

– the co-state variable appearing in the Hamiltonian func-

tion evolves according to the Euler-Lagrange equation:

λ̇(t) = −
∂H

∂x
= −
∂L(x, u, t)

∂x
− λT (t)

∂ f (x, u, t)

∂x
(5)

Equations (4) and (5) provide the solution to the problem,

under the hypothesis that the optimal control u∗(t) exists and

is unique (1).

2 STANDARD PMP AND ECMS

2.1 Problem Formulation

In this section, the generic optimal control problem intro-

duced in Section 1 is explicitly written for a hybrid electric

vehicle, using the standard formalization in literature (see

e.g. [1] or [5]). Assuming a vehicle that follows a prescribed

driving cycle and neglecting all fast dynamics in the power-

train as well as the thermal phenomena, the vehicle state can

be represented by the battery State of Charge (SOC) ξ, that

is: x = {ξ}. The system dynamic equation f (x, u, t) is then:

ξ̇(ξ, u, t) = −
1

Qb

Ib(ξ, u, t) (6)

where Ib is the battery current and Qb the battery charge

capacity.

The control variable is generically indicated as u(t) and

represents the power split between the on board energy

sources.

In the standard case, in which fuel consumption mini-

mization is the only optimization objective, the instanta-

neous cost L(x, u, t) is the fuel flow rate, expressed in terms

of fuel power (which does not depend explicitly on SOC):

L(·) = P f uel(u, t) = Qlhvṁ f (u, t) (7)

(Qlhv being the constant fuel energy density). In the follow-

ing sections, cases in which L(·) takes different meanings are

also considered.

(1) The existence and uniqueness of the solution have not been proved

in the general case but are generally accepted conditions in the typical

HEV case, for which Kim et al. [6] provided a formal proof under some

mildly simplifying hypotheses (constant co-state).
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The optimization problem is extended to the time interval

[0, t f ] and consists in finding the optimal control u∗(t) that

minimizes the total cost:

J =

∫ t f

0

L(ξ, u, t)dt (8)

subject to the following constraints:

– initial conditions and system dynamics:

ξ(0) = ξ0 (9)

ξ̇(t) = f (ξ, u, t) (10)

– instantaneous constraints:

umin(t) ≤ u(t) ≤ umax(t) ∀t ∈ [0, t f ] (11)

ξmin ≤ x(t) ≤ ξmax ∀t ∈ [0, t f ] (12)

– global constraints:

ξ(t f ) = ξ f (13)

Equation (13) represents a generally accepted terminal

condition, which imposes a pre-defined final battery SOC

(typically the same as the initial value, for charge-sustaining

HEV). However, its use is justified mainly as a way to com-

pare the results of different solutions by guaranteeing that

they reach the same level of battery energy. In real vehicles,

there is no need to have a fixed battery SOC at the end of

each cycle but only to keep it always between two boundary

values as defined by (12).

2.2 Optimal Control Solution

The Hamiltonian is:

H(ξ, u, t) = P f uel(u, t) − λ(t) ·
1

Qb

Ib(ξ, u, t) (14)

Let us write the co-state λ(t) as the product of the battery

total energy (constant) and a non-dimensional factor s(t):

λ(t) = −Eb · s(t) = −Voc,maxQb s(t) (15)

where Eb = Voc,maxQb is the battery total energy content,

product of the open circuit voltage Voc and charge capacity

Qb. The non-dimensional term s(t) is called equivalence

factor.

When λ is replaced with this expression, the Hamiltonian

function can be interpreted as an equivalent fuel consump-

tion (or more precisely, an equivalent fuel power):

H(ξ, u, t) = P f uel(u, t) + s(t) · Pech(ξ, u, t) (16)

where s(t) can be interpreted as a weighting factor of

the battery power consumption with respect to the fuel

power. Pech(ξ, u, t) = Voc,maxIb(ξ, u, t) is the electrochemical

power, i.e. the power that corresponds to the effective battery

discharge (2).

Since it is proportional to λ(t), the equivalence factor

evolves in time according to Equation (5), i.e.:

ṡ(t) = −
∂P f uel(u, t)

∂ξ
− s(t)

∂Pech(ξ, u, t)

∂ξ
(17)

The first term of Equation (17) is zero (the fuel consump-

tion does not depend directly on SOC) and in most cases,

the second term is also approximated to zero, neglecting

the SOC effect on the effective charge/discharge power, i.e.

assuming that the battery parameters (e.g. internal resis-

tance) do not depend sensibly on state of charge (3). Under

this simplification, s(t) is approximately constant, which

allows to prove the existence and uniqueness of the optimal

solution [6] and also to simplify the online implementation.

The boundary conditions of the problem are given in

terms of the initial and final value of the system state, while

the co-state is completely free. For the numerical solution,

the so called shooting method is used to deal with the split

boundary conditions: the method consists in applying an

iterative search procedure to find the initial value of the

co-state, s(0), that generates the desired final value of the

state (13).

The shooting method procedure requires several runs of

the same driving cycle, which is obviously possible only for

off line optimization. Instead, for online implementation, it

is assumed that the variation due to Equation (17) is neg-

ligible, and that there exists an optimal constant value of s

that brings the SOC to a desired final value ξre f . Since this

optimal value is unknown a priori, the value of s(t) at each

instant is computed by correcting the initial guess s0 with

a term proportional to the difference between the measured

SOC value and its reference value ξre f . In other words, s(t)

is corrected with a feedback on the system state, in order to

reach the reference value at steady state. The feedback law

takes the form of a PI-controller [7-9]:

s(ξ, t) = s0 + kP

(

ξre f − ξ(t)
)

+ kI

∫ t

0

(

ξre f − ξ(τ)
)

dτ (18)

Other online adaptation methods were also devised, includ-

ing methods based on driving cycle prediction [10], on

driving pattern recognition [11] or SOC-feedback based

on driving cycle sections [12]. The off line implementation

is normally referred to as PMP, while the online imple-

mentation is denoted as ECMS (Equivalent Consumption

Minimization Strategy), or sometimes adaptive ECMS to

(2) The effective battery discharge is different than the net electrical energy

supplied by the battery, because of the battery efficiency, which makes

the electrochemical power higher than the electric power during dis-

charge and lower during charge.

(3) This simplification is a good approximation in most cases, especially

if the battery is maintained in a relatively narrow range of SOC.
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point out the fact that the equivalence factor is dynamically

adapted to the actual driving conditions.

2.3 Limits and Extension of the Standard ECMS
Formulation

The standard ECMS formulation provides very good results

within the limits of its hypotheses. In fact, if PMP with

appropriately tuned equivalence factor can be identical to

the numerical optimum computed with dynamic program-

ming, thanks to the fact that both provide the optimal solu-

tion [5], the online ECMS implementation with adaptation

of s(t) based on SOC-feedback can be very close to the opti-

mal solution (within 1-2% in terms of total cost) [7].

However, in some cases, the hypotheses on which the

standard ECMS is based (quasi-static, iso-thermal behavior)

may be unrealistic and therefore, the solution provided is not

actually optimal. This is particularly true for the temperature

variation, as shown in Section 6.1.

In addition to this, in some cases the optimization objec-

tives can be more complex than simple fuel consumption

minimization: for example, there may be additional terms in

the cost function, such as pollutant emissions, battery aging;

or additional constraints, for special applications (e.g. plug-

in HEV); or the need to perform a three-way power split if

there are more energy sources on board.

In the following sections, modifications to the standard

ECMS, in various forms, are proposed. All are based on pre-

viously published works, showing that they can all be cast

into a unified framework. The definition of the problem in

the appropriate form is only the first step; the solution of the

problems presented in the following sections still presents

many open issues, currently object of active research.

3 MODIFICATIONS TO BOUNDARY CONDITIONS

3.1 Battery Depletion for Plug-in Vehicles

In plug-in hybrid electric vehicles, the objective is not to

maintain the battery SOC around its nominal value, as in

standard HEVs, but rather to discharge the battery as much

as possible before plugging the vehicle in the electric grid,

in order to minimize the use of fuel and maximize the use of

electrical energy [13, 14].

3.1.1 Problem Definition

The problem formulation given in Section 2.1 remains for-

mally identical. However, the final value of the battery SOC

is different than the initial one, i.e. ξ f � ξ0.

3.1.2 Solution

The new final condition does not change the off-line opti-

mization with respect to the standard case: the optimal value

of s(0) will still correspond to the specified final value.

However, there is some variation in the online implemen-

tation: the reference value ξre f appearing in Equation (18)

is not constant anymore but it changes during the driving

cycle. Unless offline optimization is carried out beforehand,

the reference value is not actually known a priori; there-

fore, it must be approximated: one possible method [14]

consists in assuming a nominal discharge profile, for exam-

ple evolving linearly with the distance (blended mode). An

alternative solution is to discharge completely the battery

initially, then regulate around a low-SOC constant reference

level (charge depleting/charge sustaining mode or CD/CS).

Blended mode

This mode consists in applying Equation (18) during the

entire cycle, with ξre f computed at each instant as a function

of the distance:

s(ξ, t) = s0+kP

(

ξre f (t)−ξ(t)
)

+kI

∫ t

0

(

ξre f (τ)−ξ(τ)
)

dτ (19)

ξre f (t) = ξ(0) −
D(t)

Dtot

·
(

ξ(0) − ξ f

)

(20)

with D(t) being the current distance traveled, Dtot the total

distance before reaching a recharge point, ξ f the target final

state of charge (low level, from which to recharge). Obvi-

ously, this method requires preliminary knowledge or esti-

mation of the total distance Dtot, for example by using the

route planned by a GPS device; the linearity of the discharge

profile with the distance is only an approximation of the

assumed optimal behavior.

CD/CS mode

The second case corresponds to the introduction of a dis-

continuity in the value of s, which is zero in the first part

of the cycle (tendency to discharge as much as possible, i.e.

to minimize fuel consumption without weighting the battery

discharge), while in the second part of the cycle – once the

SOC has decreased below a threshold value – it takes the

value given by Equation (18), with ξre f constant, in order to

keep the solution charge-sustaining.

3.1.3 Results

Figure 1 shows an example of a plug-in HEV with the two

strategies thus far outlined. The example is taken from

simulations of a heavy-duty series HEV, currently being

developed by IFP Energies nouvelles and industrial partners,

and shows that the blended mode is more efficient than

the CD/CS mode, as it is expected since it represents the

direct implementation of PMP for the entire cycle, while the

CD/CS mode corresponds to splitting the problem in two

sections, each with different boundary conditions. On the

other hand, online implementation of blended mode is only

possible if the total trip distance is known in advance, which

is not normally the case. The results in Figure 1 show a rel-

atively small difference between the blended mode and the
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Figure 1

Charge-depleting (plug-in) HEV: comparison between

blended-mode and CD/CS mode, for a heavy-duty series HEV.

Fuel consumption in blended mode is 2.5% better than in

CD/CS mode.
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Figure 2

Charge-depleting (plug-in) HEV: comparison between

blended-mode and CD/CS mode, for the GM Volt powertrain,

over a 90-km trip (repet. of US06 cycle). In this case, blended

mode results in a fuel consumption reduction of 8% with

respect to CD/CS mode [15].

CD/CS mode (fuel consumption in blended mode is 2.5%

smaller than it is in CD/CS mode). This is most likely due to

the fact that the case study is a series HEV, with a heavy-duty

Diesel engine: the relatively flat efficiency characteristic

of the engine translates into low potential for optimization,

thus the differences between the strategies are fairly small.

Another example of plug-in HEV, for which it is easier to

see the advantage of blended mode, is the Chevrolet Volt.

Results of simulations realized with the Hybrid Optimiza-

tion Tool (HOT) developed at IFP Energies nouvelles [2, 7]

and based on GM published data [15-17] are reported in

Figure 2: the fuel consumption reduction with the blended

mode in this case is in the order of 8%, showing the high

potential for improvement if trip length before recharge is

known in advance.

4 MODIFICATIONS TO COST FUNCTION

In the standard case described in Section 2, the optimization

criterion applied is the overall fuel consumption. However,

different objectives can be defined: for example, the amount

of pollutant emissions, the battery wear and aging or – in

the case of plug-in vehicles – the overall economic cost, the

total amount of CO2 emissions, etc.

In this section, two cases are presented: minimization of

emissions along with fuel consumption and minimization of

battery aging, both assuming a charge-sustaining HEV.

4.1 Pollutant Emissions

For a Diesel HEV, the optimization criterion can be adapted

in order to take into account NOx emissions [3, 18, 19]. The

fuel mass flow rate and the NOx emission strongly depend

on the engine operating condition. As a first approximation,

in [19] two static maps depending on engine speed Ne and

torque Teng are used to model the emissions:

ṁ f (t) = fFC(Teng,Ne) (21)

ṁNOx (t) = fNOx (Teng,Ne) (22)

4.1.1 Problem Definition

The energy supervisor should provide a compromise

between fuel consumption reduction and NOx emission

abatement [19]. In order to do so, the term P f uel in the

cost function (7) is replaced by the sum of fuel consumption

and emission rates:

P∗f uel = Qlhv

[

(1 − α1) ṁ f + α1 ṁNOx

]

(23)

where the parameter α1 is used to set the trade-off between

fuel consumption and NOx emission. Then, the problem

formulation consists in the minimization of the cost:

J =

∫ t f

0

P f uel(t) · (1 − α1) + PNOx (t) · α1dt (24)

where PNOx is the product of the fuel lower heating

value Qlhv and the NOx emission rate.

4.1.2 Solution

Since the cost function is the only difference with respect to

the standard case, the Hamiltonian of the problem shows the

same structure as (16):

H(t) = P f uel(t) · (1 − α1) + PNOx (t) · α1 + s(t) · Pech(t) (25)

The solution is identical to the standard case, since the

differences in the cost function do not affect the co-state

dynamics (i.e., it is still s(t) ≈ s0).
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4.1.3 Results

Simulation results are presented in Figure 3. These simula-

tions are performed with the weighting parameter α1 rang-

ing from 0 to 0.65 (i.e. from the minimum of fuel consump-

tion to the minimum of NOx emission). The trends are clear

and demonstrate the great potential for limiting NOx emis-

sion at a price of a very small increase of fuel consumption.

The achievable NOx reduction is close to 40% for FTP (US

Federal Test Procedure) cycle. On the other hand, the fuel

penalty is small and does not exceed 5%.
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Figure 3

Simulated fuel consumption and NOx for the FTP cycle as a

function of parameter α1.

Table 1 and Figure 4 show the experimental results of the

proposed strategy. The engine tests where performed on an

engine in-the-loop test bench [2]. The considered Diesel

engine is a supercharged, 1.6 liters, four cylinder engine

fitted with low pressure and high pressure Exhaust Gas

Recirculation (EGR) systems. The Diesel engine calibration

allows Low-Temperature Combustion (LTC) operation and

the engine has no dedicated after-treatment system for NOx

emissions. The bench allows to test several vehicle con-

figurations: conventional vehicle (architecture A), micro-

hybrid electric vehicle with stop and start capability (archi-

tecture B) and parallel hybrid HEV (architecture C). The

comparison concerns the achitecture C with a fuel-economy

optimization and a NOx reduction optimization. The test

results are summarized in Table 1 and in Figure 4. This

confirms the offline simulation results plotted in Figure 3.

The parameter α1 allows to reduce the NOx emission at the

price of a small increase in fuel consumption. These results

confirm the simulated behavior of engine performances and

TABLE 1

Experimental results from [19]: comparison of powertrain configuration

including Fuel Consumption (FC) and NOx oriented optimization and

validation with experimental results (NEDC cycle)

Vehicle architecture A B C C

Mass (kg) 1 470 1 470 1 630 1 630

Hybrid strategy
- SS

FC NOx

α1 = 0.2 α1 = 0.5

FC - experim. (L/100 km) 4.45 4.16 3.43 3.50

FC - model (L/100 km) 4.31 4.17 3.30 3.52

NOx - experim. (mg/km) 109 100 82 67

NOx - model (mg/km) 92 79 68 52
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Figure 4

Summary of the experimental results in [19]. The gains are rel-

atives to the stand-alone Diesel engine (architecture A). Three

configurations are displayed: vehicle B (with Stop and Start),

vehicle C with α1 = 0.2 and vehicle C with α1 = 0.5.

prove that the adapted ECMS is suitable for the Diesel HEV.

It should be noticed that the power split behavior is modified

compared to the standard optimization policy applied for

gasoline HEV. More details can be found in [19].

4.2 Battery Aging

Similarly to what happens for the pollutant emissions, it is

possible to modify the problem definition to include in the

cost function the reduction of battery life during the driving

cycle [20]. If the battery temperature variation is neglected

(assuming perfect cooling), then the problem can be formu-

lated once again as in the standard case, only modifying the

cost function.

4.2.1 Problem Definition

The reduction of battery life is proportional to the integral

of the current flow in and out of the battery, corrected with
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a severity factor σ that determines the aging effect of the

instantaneous operating conditions. The instantaneous cost

function is therefore:

L(ξ, u, t) = (1 − α2)Qlhvṁ f (u, t)

+α2ca
σ(ξ,u,θb)|Ib(ξ,u,t)|

Γ

(26)

where Γ is the total battery life in nominal conditions,

expressed in Ah (a constant value for a given battery),

σ(ξ, u, θb) is the severity factor of the instantaneous operat-

ing conditions (SOC, current intensity, battery temperature)

and ca a cost conversion factor necessary to make dimen-

sionally homogeneous the two terms of the cost. α2, on the

other hand, is a weighting factor to decide the importance

of each term. The temperature is assumed to be constant, to

keep the formulation simpler. (This assumption is removed

in Sect. 6.3).

4.2.2 Solution

The Hamiltonian is:

H(ξ, u, t) = (1 − α2)P f uel(u, t)

+α2ca
σ(ξ,u,θb)|Ib(x,u,t)|

Γ

+s(t) · Pech(ξ, u, t)

(27)

Since the aging term in instantaneous cost (26) depends

directly on the SOC ξ, the dynamic variation of s(t) given

by Equation (17) cannot be neglected a priori and instead

should account for this effect.

4.2.3 Results

The simulation results of Figure 5 show the solution to this

problem for three values of the weighting factor α2, clearly

indicating the fact the value of s depends on α2, i.e. on

the definition of the cost. The term s(t) also appears to

be approximately constant in all cases, meaning that the

variation due to battery aging and SOC dynamics are both

negligible.

Figure 6 provides global results for the same cases, show-

ing the trade-off between fuel consumption and longer bat-

tery life, which increases significantly in some cases. In fact,

for higher values of α2, the battery is used at lower power to

preserve its life, but this obviously reduces the HEV fuel

consumption benefit over the corresponding conventional

vehicle.

5 OPTIMIZATION WITH STATE CONSTRAINTS

The general optimization problem defined in Section 2 does

include state constraints but, in fact, the application of PMP

presented generates the optimal solution only when these

(
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Figure 5

Example of optimization including battery aging: SOC evolu-

tion during a driving cycle (Artemis urban + suburban).
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Trade-off between fuel consumption and battery aging. Fuel

consumption is expressed as the reduction with respect to the

conventional vehicle, and battery aging is represented by total

projected battery life, relative to the standard ECMS case.

constraints are not actually reached. In practical imple-

mentations, there are normally methods to avoid overcom-

ing the constraints but the resulting solution is subopti-

mal. Rigorous application of PMP in presence of state

constraints (following, for example, the methods outlined

in [21]) would be necessary but its online implementation

represents still an open issue. The problem is not par-

ticularly relevant for regular HEV optimization, when the

boundary values of SOC are rarely met in normal condi-

tions; however, it becomes important in some special cases,

for example when supercapacitors are present. With lower

energy and higher power than a battery, supercapacitors can

be completely charged and discharged very rapidly, thus
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their SOC is often hitting the allowable limits. One example

of critical application is energy management strategies in

a dual storage hybrid vehicle, with batteries and superca-

pacitors together. This problem is tackled in [22]: in order

to overcome the numerical issues and general difficulty in

online implementation, an heuristic control strategy is pro-

posed for the online implementation, while the offline opti-

mum is provided by dynamic programming. Current work

is ongoing to allow for a practical implementation of PMP

in these cases where the boundary limits are hit frequently.

6 ECMS WITH ADDITIONAL STATE VARIABLES

In some cases, the basic model that only includes SOC as

system dynamic state is not sufficient. For example, in both

the problems proposed in Sections 4.1 and 4.2, the cost

should actually depend strongly on a temperature value (in

the combustion chamber for NOx emissions, of the battery

for its aging). The assumption of constant temperature is

therefore not meaningful, as it introduces an excessive sim-

plification that reduces the significance of the problem. Both

problems can reformulated to include the respective tem-

perature states, as shown in this section. Additional state

variables are also needed in order to include catalyst effi-

ciency (which depends on temperature) [23, 24], recuper-

ation devices (thermoelectrical or thermodynamic systems

using the exhaust heat [24]) or even the dynamics of SOC

estimation error [25].

6.1 Engine Temperature

Consider the case in which basic fuel consumption reduction

is the minimization objective during a cold-start operation.

Using the standard ECMS with the hypothesis of constant

temperature may lead to a suboptimal result, because the

ECMS ignores the effect of temperature on the fuel con-

sumption map during the warm-up phase. On the other

hand, an heuristic strategy, being less sensitive to the engine

model, is not impacted too much.

In order to account for the temperature effect on the

engine fuel consumption, the thermal dynamics of the

engine can be represented by a lumped-parameter model as

follows [24, 26]:

Ceθ̇e = Pth,e(Te,ωe, θe) −Ge · (θe − θ0) − Pth,aux (28)

where Te is the engine torque, ωe its speed, θe the engine

temperature, Ce the engine equivalent thermal capacity, Ge

its equivalent thermal conductivity, Pth,e the sum of the fric-

tion power dissipated into heat and thermal power trans-

ferred from the engine exhaust gas to the coolant, Pth,aux the

thermal power drained by the cabin heater.

6.1.1 Problem Definition

The cost function remains the same as the standard problem,

i.e. minimizing Equation (8). The difference is that the state

vector x now has two components, i.e. SOC and engine

temperature:

x = {ξ, θe} (29)

The dynamic equations are respectively (6) and (28), and

the fuel consumption that appears in the cost (7) is now a

function of temperature as well as power split:

ṁ f = ṁ f (u, θe)

6.1.2 Solution

The Hamiltonian is:

H(·) = P f uel(u, θe, t) − λ1(t) · ξ̇(u, ξ, θe) − λ2(t) · θ̇e(u, θe, t)

(30)

The SOC co-state λ1(t) is modified like in the standard

case:

λ1(t) = −Ebatt · s(t) (31)

and the engine temperature co-state is written as:

λ2 = −Ce · p(t) (32)

so that each term in the Hamiltonian can be expressed with

the physical units of power:

H(·) = P f uel(u, θe, t) + s(t)Pech(u, ξ, θe) + p(t)Pth,e(u, θe, t)

(33)

where Pth,e = Ce · θ̇e is the power associated to the engine

thermal exchange.

The variation of the equivalence factor s(t) and the “tem-

perature variation factor” p(t) is computed according to

Equation (5):

ṡ(t) = −s(t) ·
∂Pech(u, ξ, θe, t)

∂ξ
≈ 0 (34)

ṗ(t) = −
∂H(u, ξ, θe, t)

∂θe

= −

(

∂P f uel

∂θe

+ p(t) ·
∂Pth,e

∂θe

)

(35)

The variation of s(t) is approximately zero as in the stan-

dard case (its expression not being affected by the addi-

tional state variable), while the variation of p(t) cannot be

neglected a priori.

6.1.3 Results

An example of application is shown in Figure 7, which

shows simulation results comparing an heuristic strat-

egy to the standard ECMS of Section 2 and the 2-state

ECMS described by Equation (33). The fuel consumption

is 4.89 L/100 km for the heuristic strategy, 5.10 L/100 km

for the standard ECMS, and 4.67 for the 2-state ECMS:

the standard ECMS, neglecting the temperature variation, is
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Optimization results on NEDC with cold start [26].

worse than the heuristic strategy. This is understandable by

looking at the engine temperature, which rises very slowly

with the standard ECMS, thus making the engine operate

in cold condition (low efficiency) for a longer time. On the

other hand, the 2-state ECMS that accounts for the tempera-

ture variation is more efficient than both the standard ECMS

and the heuristic strategy, as expected.

6.2 Engine and Catalyst Temperature

If emissions are also to be optimized, the problem must be

further modified in both the cost function and the system

model, introducing engine temperature θe and catalyst tem-

perature θc, since both have an effect on the emission rates.

6.2.1 Problem Definition

The problem definition consists in the minimization of fuel

consumption and emission rates, and is similar to the one

introduced in Section 4.1:

L(θe, θc, u, t) = Qlhv ·

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −
∑

j

α j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

· ṁ f (u, θe, t)

+
∑

j

α j · ṁ j(u, θe, θc, t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(36)

with j = {CO,HC,NOx}. Since the effect of temperature on

the catalyst conversion efficiency is the same for the three

pollutant emissions (at least in the simplified model consid-

ered here), the values αCO = α3 � 0, αNOx = 0, αHC = 0 are

used for simplicity.

6.2.2 Solution

The system has three dynamic states: θe, θc, ξ. Following

the same approach as in Section 6.1, the Hamiltonian is:

H(·) = (1 − α3) · P f uel(u, θe, t) + α3 · PCO(u, θe, θc, t)

+ s(t) · Pech(u, ξ, θe, t) + p(t) · Pth,e(u, θe, t)

+ q(t) · Pth,c(u, θe, θc, t) (37)

where PCO(·) � QlhvṁCO, and Pth,c � −Ccθ̇c is the thermal

power associated with the catalytic converter.

The Euler-Lagrange equations are:

ṡ(t) = −s(t) ·
∂Pech(u, ξ, θe, t)

∂ξ
≈ 0 (38)

ṗ(t) = −
∂H(u, ξ, θe, θc, t)

∂θe

= −

[

(1 − α3)
∂P f uel

∂θe

+ α3

∂PCO

∂θe

+p(t)
∂Pth,e

∂θe

+ q(t)
∂Pth,c

∂θe

]

(39)

q̇(t) = −
∂H(u, ξ, θe, θc, t)

∂θec

= −

(

α3

∂PCO

∂θc

+ q(t)
∂Pth,c

∂θc

)

(40)

Note that the approach of [3] reduces to an approximation

of this solution with p ≡ 0, q ≡ 0, while α3 (denoted as β3 in

that paper) varies to achieve different compromises between

the cost and emissions. On the other hand, the strategy pro-

posed in [8] is equivalent to this when α3 = 1 and p ≡ 0 (no

engine thermal dynamics) but q(t) � 0.

6.2.3 Results

The presence of three co-states, two of which vary with

coupled dynamics, poses a significant challenge for the

numerical solution of the problem. Preliminary simulation

results [24] are shown in Figure 8. These are obtained by

manual search of the initial values s(0), p(0), q(0) that sat-

isfy all terminal constraints; the cost function is defined with
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Comparison of three strategies on the NEDC. a) Catalyst tem-
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or temperature rise correspond to engine-on phases, while tem-

perature decrease or zero CO emission characterize engine-off

phases [24].
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α3 = 0.25. The total cost with the baseline heuristic strategy

is 12.87 MJ. Despite its neglection of relevant dynamics,

standard ECMS (Sect. 2) is already capable of attaining a

similar result: 1.67 g of CO and 4.87 L/100 km of fuel, with

a cost function of 12.83 MJ. This result is obtained by limit-

ing the engine-on phases and concentrating them toward the

end of the cycle, rather than the fastening the rise of cata-

lyst temperature, since standard ECMS is not temperature-

sensitive. A better result is obtained with the full strategy

(3-state ECMS): 2.15 g CO and 4.78 L/100 km of fuel, for a

cost function of 12.58 MJ. The rise of temperature is faster

than with the standard ECMS but less aggressive than with

the heuristic strategy. See [24] for more detailed discussion

of thermal optimization.

6.3 Battery Temperature
The battery characteristics, especially the internal resis-

tance and aging effects, depend strongly on the tempera-

ture. While in most cases its effect is neglected, assuming

that the cooling system keeps the battery pack at a constant

and homogeneous temperature, it is also possible to mod-

ify the problem formulation and system model in order to

account explicitly for the battery thermal dynamics, which

have characteristic times comparable to SOC dynamics. For

a simpler implementation, it is also possible to account for

the temperature effect in the parameters, without explicitly

including it in the problem formulation. In this section, the

formulation of ECMS with battery aging of Section 4.2 is

expanded to include the thermal dynamics. The thermal

model presented in [27] is used:

θ̇b =
1

mcp

(Rtot(ξ, θb, Ib) · I2
b

+wth(ξ) · Ib · θb − qn(θb) − q f (uc)) (41)

where θb represents the battery temperature, mcp is its ther-

mal capacity, Rtot the equivalent internal resistance, Ib the

total current, wth(ξ) represents the entropic term that deter-

mines the reversible heat generation at the electrodes (due to

the electrochemical reactions), qn(θb) is the heat exhanged

with the environment and q f (uc) is the heat removed by the

forced cooling system (uc being its control variable).

6.3.1 Problem Definition

The system state is described by the SOC and the battery

temperature, i.e. x = {ξ, θb}. The cost function accounts for

fuel consumption and battery aging, as in Section 4.2, but

now the aging function – like the other battery parameters –

depends explicitly on the temperature:

L(ξ, θb, u, uc, t) = (1 − α2)P f uel(u, uc, t)

+α2ca

σ(ξ, θb, Ib) |Ib(ξ, θb, u, uc, t)|

Γ
(42)

The control variables include the power split u and the bat-

tery forced cooling uc, since the objective is to integrate the

thermal management in the overall optimization.

6.3.2 Solution

The Hamiltonian is given by:

H(ξ, θb, u, uc, t) = (1 − α2)P f uel(u, uc, t)

+α2ca

σ(ξ, u, θb) |Ib(ξ, θb, u, uc, t)|

Γ
+ s(t) · Pech(ξ, θb, u, uc, t)

+ r(t) · mcpθ̇b(ξ, θb, u, uc) (43)

where r(t) is a non-dimensional factor proportional to the

temperature co-state (which is r(t) · mcp). The two factors

s(t) and r(t) in the Hamiltonian evolve according to their

respective dynamic equations:

ṡ(t) = −
∂H(ξ, θb, u, uc, t)

∂ξ
(44)

ṙ(t) = −
∂H(ξ, θb, u, uc, t)

∂θb

(45)

The initial value of both s(t) and r(t) must be found in such

a way that the terminal condition on SOC is met, and that

the battery temperature remains within an acceptable range.

Once again, the main difficulty is the numerical identifica-

tion of these initial conditions, which is object of current

investigation.

CONCLUSION

This paper presents some of the topics on which researchers

are currently working at IFP Energies nouvelles. The com-

mon theme is the application of optimal control technique

to cases more and more complete and complex but which

all can be cast into an optimization problem to be solved

using Pontryagin’s Minimum Principle (PMP). Some appli-

cations, consisting in additional cost terms (such as emis-

sions or battery aging, both computed using static maps),

are almost immediate and yield good results. More interest-

ing cases include system models with additional states, such

as engine and catalyst temperature or battery temperature.

For these cases, the basis of the analytical solution is pro-

vided in this paper but implementing the resulting strategy

is quite difficult offline and impossible online, for the lack of

robust adaptation methods for the optimization parameters

(co-states). Current and future work is aimed at overcoming

these numerical difficulties, either by appropriate algorithms

or with alternative methods such as heuristics strategies to

simplify the co-state estimation.
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