
Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 68 (2013), No. 1, pp. 127-135

Copyright c© 2013, IFP Energies nouvelles

DOI: 10.2516/ogst/2012072

RHEVE 2011:  International Conference on Hybrid and Electric Vehicles

RHEVE 2011 :  Conférence internationale  sur les véhicules hybrides et électriques 

A Review of Approaches for the Design of Li-Ion
BMS Estimation Functions

D. Di Domenico∗, Y. Creff, E. Prada, P. Duchêne, J. Bernard and V. Sauvant-Moynot

IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize - France
e-mail: domenico.didomenico@ifpen.fr - yann.creff@ifpen.fr - eric.prada@ifpen.fr - pascal.duchene@ifpen.fr

julien.bernard@ifpen.fr - valerie.sauvant@ifpen.fr

∗ Corresponding author,

Résumé — Revue de différentes approches pour l’estimation de l’état de charge de batteries

Li-ion — Cet article vise à comparer différentes approches pour l’estimation de l’état de charge pour les

batteries Li-ion. Les principaux avantages ainsi que les points critiques des différentes techniques sont

analysés, en soulignant l’impact de la complexité et de la précision du modèle sur les performances

de l’estimateur. La procédure complète, allant de la caractérisation de la cellule jusqu’à l’estimation

en ligne de l’état de charge, est présentée pour la modélisation par circuit électrique équivalent. Les

tests expérimentaux sur la base des données acquises au laboratoire batteries d’IFP Energies nouvelles

montrent que cette stratégie permet d’obtenir un estimateur en temps réel de l’état de charge présentant

de bonnes performances.

Abstract — A Review of Approaches for the Design of Li-Ion BMS Estimation Functions — This
paper aims at comparing different approaches for the estimation of the state of charge of lithium-ion
batteries. The main advantages as well as the critical points of the considered techniques are analyzed,
highlighting the impact of the cell model precision and complexity on the estimator performance.
Among others, the electrical equivalent circuit based technique is selected for further development.
The results of a complete procedure from the cell characterization to the online estimation are illus-
trated. The experimental tests based on the data collected on batteries testing facilities of IFP Energies
nouvelles show that the proposed strategy allows a satisfying state of charge real time estimation.

INTRODUCTION

The progressive increases in the oil costs as well as the

emission restrictions imposed by the standards to reduce

the environmental pollution are strongly stimulating the

research interest for non-traditional vehicles. It is widely

accepted that, among others, Electric, Hybrid Electric and

Plug-in Hybrid Electric Vehicles (EV, HEV and PHEV) rep-

resent a promising alternative to traditional vehicles. Their

massive presence and good performance in portable electric

devices make lithium-ion (Li-ion) battery a natural candi-

date for electrical energy source in the new vehicles con-

cepts.

The automotive control research is then moving towards

efficient Li-ion Battery Management System (BMS) design.

BMS has to ensure the appropriate use of the capability of

the battery in providing the electrical power demand while

guaranteeing feasible and safe operations. Indeed, apart

from avoiding the overcharge, the overdischarge and the

thermal abuse, that can cause battery lifetime degradation,

permanent damages or even explosion, an efficient BMS

must include the cell monitoring, the cell balancing, the

estimation functions and the battery thermal management.
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Among other factors, the battery State of Charge (SOC)

has a big impact on the dynamics as well as on the battery

behavior in terms of voltage, thermal increase and available

power. Accurate knowledge of the actual battery SOC is

thus required for the vehicle management, for achieving

high efficiency, slow aging, no battery damaging and, for

the HEV and the PHEV, for reducing the pollutant emission.

Furthermore, as a reliable SOC estimation allows a correct

use of the battery, it is useful to improve both battery health

and vehicle economy through optimal battery sizing [1].

As a consequence, SOC estimation is a key task for

BMS [2, 3]. Several techniques have been proposed for

SOC estimation, with advantages and disadvantages [4].

Among them, the Ampere-hour (Ah) counting is used by

many industrial battery BMSs. Consisting in integrating the

battery current, this open-loop and non-model based method

is easy to implement online but it is affected by the uncer-

tainty on the initial condition, by the measurement error

accumulated during the battery life and by the battery capac-

ity degradation due to usage [3, 5, 6]. To overcome these

issues and improve the BMS functions, several approaches

based on dynamic battery models have been investigated

in [4, 5, 7-19]. Regarding the SOC estimation, the main

advantage of the model-based methods is that the initializa-

tion error can be recovered by means of output (voltage and

temperature) feedback, the closed-loop estimation concept

consisting in comparing the measurement of the cell voltage

and temperature with model predictions. In case of discor-

dance, the state value is corrected in order to minimize the

prediction mismatch. A further advantage of some model-

based estimators is to filter the measurement noise.

To take advantage of a model-based estimator, a high

precision open-loop model of the cell is required, both for

steady-state (open circuit voltage vs SOC map) and for

dynamics (related to the model parametrization). At steady

state, a variation of 80% of SOC implies a typical variation

of the cell voltage smaller than 1 V, so a low precision in

voltage prediction leads to a huge indetermination in SOC.

If a SOC error of a few percents is desired, the level of preci-

sion for the steady state voltage should be about 20 mV, this

value depending on the specific application, chemistry and

SOC range. For the cell dynamics modeling, no generaliza-

tion can be made, because the required degree of precision

depends on the operational conditions. Nevertheless, the

model has to be able to accurately reproduce the measured

voltage shape during usage.

For practical purposes the battery models can be classi-

fied in two main categories, the equivalent circuit and the

electrochemical models. This paper presents a short review

of the main models for both categories, critically oriented

to the design of BMS for automotive application. Then a

case study is proposed. It illustrates a comprehensive pro-

cedure for obtaining a cell inner state estimator, including

the experimental characterization and the model calibration.

The proposed estimation strategy leans on both static and

dynamic modeling approaches. The procedure effectiveness

is tested by considering both the modeling and estimation

aspects. An experimental test based on the data collected on

batteries testing facilities of IFP Energies nouvelles shows

that the proposed approach allows for a satisfying SOC real

time estimation.

1 AMPERE-HOUR COUNTING

Ampere-hour counting can be considered as the classical

SOC estimation technique and it is used by many commer-

cial battery BMSs. Based on the relationship between the

electric current and the electric charge, the SOC is defined

as

SOC(t) = SOC(t0) +
1

Cnom

∫ t

t0

Icell(τ) dτ (1)

where Icell is cell current and Cnom is the nominal cell capac-

ity. This open-loop and non-model based method is easy

to implement online but it is affected by the uncertainty on

the initial condition, by the measurement error accumulated

during the battery life and by the battery capacity degra-

dation with battery aging [3, 5, 6]. Other drawbacks, such

as the losses during charge or discharge and the estima-

tion drift caused by the cell self-discharge have also been

highlighted [20]. The Ah counting can be combined with a

closed-loop initialization technique: after a long rest period,

the SOC estimation is updated by inverting the Open Circuit

Voltage (OCV) map based on the voltage measurement [3].

In order to perform the initialization, an offline charac-

terization of the OCV as function of the SOC and temper-

ature is necessary. The precision of SOC estimation per-

formed with the Ah counting method is essentially given by

the derivative of the OCV with respect to the SOC and it

depends on the actual SOC value. Moreover several factors,

such as the voltage sensor accuracy, the measurement errors

or the statistical dispersion among the cells can strongly

affect the precision of the map and, as a consequence, the

precision of the SOC initialization. The error on SOC ini-

tialization is then propagated with time, invalidating the esti-

mation. Furthermore, due to the large characteristic time

associated to the battery relaxation, the OCV measurement

can be unavailable in automotive applications [11, 19]. It is

also worth noting that such a map-based model is useless for

power estimation as it can not predict the cell voltage during

the non-zero current demands.

2 EQUIVALENT CIRCUIT MODELS

Equivalent circuit models are based on the equiva-

lence between electrochemical impedance and electric

impedance. The model calibration is usually performed

by means of the Electrochemical Impedance Spectroscopy
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(EIS), that consists in experimentally collecting the response

of the battery to a low-amplitude alternating current signal,

for a wide range of frequencies. Impedance-based models

tend to represent the three main Li-ion electrochemical

phenomena, each being preponderant in a typical range of

frequencies: electro-migration inside the electrolyte and

connectors (at high frequencies), Butler-Volmer electro-

chemical charge transfer kinetics associated with electro-

chemical double layer capacity (at medium frequencies)

and diffusion of ionic species in the electrodes and in the

electrolyte (at low frequencies). An electric circuit can be

inferred from the electrochemical spectrum.

)(tIcell

OCV
0R

ctR

dlC

diffZ

Figure 1

Modified Randles scheme.

Figure 1 shows an usual electric equivalent scheme. High

frequency effects are reproduced by the resistor R0, medium

frequency effects by the resistor-capacitance circuit and low

frequency effects by the diffusion impedance Zdif f . The

parameters of the resistor-capacitance circuit can be related

to the electrochemical charge transfer kinetics. From a sim-

plified Butler-Volmer formalism for a redox reaction, the

charge transfer current density can be expressed as:

i f = i0

(

exp

(

αox n F

Rg T
η

)

− exp

(

−αred n F

Rg T
η

))

(2)

with αox and αred the oxidation and reduction charge trans-

fer coefficients, n the number of electrons transferred by

the reaction, η the overpotential, obtained as the difference

between the electrode potential and the equilibrium poten-

tial, F the Faraday’s constant, Rg the universal gas con-

stant, T the cell temperature and i0 the exchange current

density. The exchange current density may depend on the

value of solid concentration but it is usually, in particu-

lar in the equivalent circuit approach, considered as a con-

stant. A symmetry assumption (αred = αox = 0.5) is made

concerning the charge and discharge, giving charge transfer

resistance Rct as a function of i f . The charge transfer current

can be then approximated by Icell/A, where A is the equiva-

lent electro-active surface, which depends on the electrodes

design parameters. These assumptions give:

Rct =

(

∂i f

∂η

)−1

=
Rg T

i0 n F
√

1 +
(

Icell
2 i0 A

)2
(3)

The double layer capacity Cdl can be related to the elec-

trochemical cell properties [21] but it is in general iden-

tified based on the experimental spectra. Several choices

are possible for the diffusion impedance Zdif f in Figure 1.

One of the most frequent choice is to represent the diffu-

sive impedance by a Warburg impedance, the expression

of which differs as the mass transport boundary conditions

vary [22]. Under the assumption of a finite-length diffusion,

the diffusion impedance can be written as:

Zdif f (s) = Rd
tanh

√
s τD√

s τD
(4)

with Rd the diffusion resistor, τD the characteristic diffusion

time of the phenomenon and s the Laplace variable. An

infinite-length diffusion hypothesis gives:

Zdif f (s) = Rd
coth

√
s τD√

s τD
(5)

If a semi-infinite diffusive layer is considered, Zdif f

becomes:

Zdif f (s) = σ
1

s0.5
(6)

where σ is a real constant. Equation (6) represents a par-

ticular case of a Constant Phase Element (CPE). The CPE

was introduced by Cole and Cole [23] and is associated to a

number of phenomena, such as a porous electrode or a slow

anion adsorption. It has been proposed for representing the

diffusion impedance for some Li-ion models [24, 25]. This

choice corresponds to:

Zdif f (s) =
1

Q sα
(7)

where Q is a generalized capacity and 0 < α < 1 is a depres-

sion factor. Some authors also proposed a parallel diffusive

electric assembly of a CPE and a diffusion resistance R [24],

corresponding to the impedance:

Zdif f (s) =
1

1/R + Q sα
(8)

For a given cell, the impedance is a global result of several

combined properties, including also the experimental test

set-up, i.e. the amplitude of the frequencies interval of the

EIS and the operating conditions. As a consequence, the

choice of Zdif f is performed, from a practical point of view,

on the basis of the observed experimental spectra.

In order to use one of the above impedances (Eq. 4-8)

for BMS application, the transposition to the time-domain
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is required. The Warburg impedance for finite diffusion

in Equation (4), for example, is usually implemented as

a transmission line by a finite-length Cauer or Foster-type

electric network [26].

From a theoretical point of view, the impedance-based

modeling technique is equivalent to a system linearization

around an equilibrium point at zero input and can rigorously

be applied only for low demanded currents, i.e. for small

state variations. Nevertheless, BMS applications of equiv-

alent circuit model have often been presented [19, 27-30].

Classically, the equivalent circuit battery models were used

in BMS for portable electronics, where the approximation is

adequate. This modeling approach has then been extended

to automotive applications. But care has to be taken because

of high current pulses that are out of the model range of

application. In order to adapt equivalent circuit models to

automotive applications, a circuit parameters dependence on

SOC [29-31], temperature and the amplitude of applied cur-

rent can be fitted. Moreover, to reach the precision required

for BMS applications, it may be necessary to use a more

complex electric network than the one shown in Figure 1. As

highlighted in [2], increasing the model complexity leads to

a model with a number of parameters which is comparable

to the electrochemical model. But these parameters have

no physical meaning, in particular for the description of

the low frequencies diffusive phenomena. Nevertheless, the

validation tests for these complex equivalent circuit models

give good results in general. The average absolute error

may vary, depending on the cycling test and the operating

conditions.

In general, the results presented in the literature show that

a model error between 20 mV and 30 mV results in an error

on the SOC estimation of a few percents [9, 24, 32, 33].

3 ELECTROCHEMICAL MODELS

Several electrochemical models of batteries have been pro-

posed, with varying degrees of complexity. The first electro-

chemical approach for modeling the electrodes porosity was

presented by Newman and Tiedemann [34]. The electrode

is treated as a superposition of two continua, namely the

electrolytic solution and the solid matrix. The solid matrix

is modeled as microscopic spherical particles, in which

the active specie diffuses and on the surface of which it

reacts. Based on this approach, Wang et al. introduced [35]

a pseudo 2-dimensional model of a cell that incorporates

solid-state physics and interface chemistry and, which can

be adapted to a wide range of active materials and electrolyte

solutions. First presented for Ni-MH batteries [36], it was

then extended to lithium-ion batteries [37, 38], where the

thermal behavior was also described. Based on this model,

Ramadass et al. [39] accounted for the decay in capacity

of the cell and for the increase of the resistance due the

Solid Electrolyte Interphase (SEI) growth. The pseudo-2D

electrochemical models predict the dynamic profile of solid

concentration in the solid phase across the electrode, i.e. the

x-dimension distribution of the lithium concentration.

Simplified 1D electrochemical models versions of this

approach have also been presented, either by removing the

radial dimension, [40], or by neglecting the x-dimension

variations with an averaging procedure in [2, 41-43].

For both the pseudo-2D and 1D models the most relevant

equation for SOC observers design purpose is the Fick’s

equation, describing the solid concentrations diffusion:

∂cs

∂t
=
−→
∇(Ds

−→
∇cs) (9)

where cs is the concentration of the active material and Ds

is the diffusion coefficient of the inserted species. For sake

of conciseness, the complete set of equations governing the

pseudo-2D model is not reported here. It can be found,

for instance, in [18]. Written in the radial dimension for

describing the diffusion of the active species in the spherical

particles of radius Rs, the Fick equation is:

∂cs

∂t
= Ds

(

∂2cs

∂r2
+

2

r

∂cs

∂r

)

(10)

with boundary conditions connecting the concentration with

the chemistry of the reactions through the Butler-Volmer

microscopic current density jLi:

∂cs

∂r
|r=0 = 0 (11)

at r = 0 and:

Ds
∂cs

∂r
|r=Rs = −

jLi

asn F
(12)

Ds
∂cs

∂r
|r=Rs = −

jLi

asp F
(13)

respectively for negative and positive electrode. In Equa-

tions (12, 13), asn and asp are the active surface area unit vol-

ume for, respectively, negative and positive electrode and:

jLi = as i0

(

exp

(

αox n F

Rg T
η

)

− exp

(

−
αred n F

Rg T
η

))

(14)

where as is chosen accordingly to the corresponding elec-

trode. Using the Laplace transform to compute a diffusion

impedance [44], it can be shown that in the limit of low-

frequencies and under the assumption of weak diffusion

(i.e. Ds → ∞) Equation (10), with the boundary condi-

tions (11-13), is simplified in:

dcs,n

dt
= − 3

as,n F Rg
jLi(t) (15)
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for the negative electrode and:

dcs,p

dt
= − 3

as,p F Rg
jLi(t) (16)

for the positive electrode. Equations (15, 16) are the basis

of 0D (lumped parameters) models [45, 46]. It is to be high-

lighted that, neglecting some dimensions, the 1D and the

0D models suffer, as the equivalent circuit models, from

a lack of precision for high current pulses. To evaluate the

models, the only available experimental measures are the

current and the voltage but not the SOC. Indeed, the direct

active material measurement is still unavailable in automo-

tive real time applications, in spite of the research efforts and

a recent proposition for a promising technique for in situ
quantification of the lithium concentration across battery

electrodes [47]. As a consequence, the SOC computed with

estimators can only be compared to the model SOC. In other

words, the precision of the model with respect to the experi-

ments also gives the precision of the frame in which the SOC

estimation precision is evaluated. Rigorously, the accuracy

of the cell charge level estimation should be evaluated by

combining the effect of the estimation error with respect to

the reference (i.e. the model), the accuracy of the reference

with respect to the data and the confidence degree put in the

model for predicting the solid active material evolution.

An exhaustive analysis can for example be found

in [2, 10], showing that a SOC estimator based on a model

validated against experimental voltage data with an average

error of 28 mV can reach a precision of 2-3% with respect

to the model prediction. It is also shown that the SOC esti-

mation error drastically increases with the modeling error

because the estimator modifies the SOC to compensate for

the prediction error. This result is quite similar to the one

obtained for the equivalent circuit model-based estimators,

showing that the link between voltage and SOC intrinsically

suffers from a lack of robustness.

4 SUMMARY

Table 1 summarizes the discussion and the results pre-

sented in the above sections. It shows that the precision

of the model increases with its mathematical complexity

and with its number of parameters. But increasing the num-

ber of parameters also increases the experimental efforts

for their identification. In particular, the electrochemical

models contain parameters related to the geometrical and

physico-chemical properties of the materials composing

the cell. Their identification requires specific tests, such as

single-electrode analysis, that require the cell disassem-

bling. This is not always possible because the manufacturers

may impose restrictions on the cell usage.

When based on the input/output experimental data, the

model identification is moderately difficult for the equiva-

lent circuit but it suffers from a low sensitivity and hence a

low robustness for the electrochemical models. Conversely,

when detailed measurements are allowed, an electrochemi-

cal model exhibits certain advantages such as the physical

meaning of SOC (it is related to the solid concentrations), a

good precision, the prediction of both the solid and the elec-

trolytic diffusion and their impact on the cell overvoltage,

and the possibility of a coherent and appropriate integration

of ageing effects leading to a good State of Health (SOH)

estimation.

TABLE 1

Batteries modeling

Model Mathematical Identification Required test Precision Applications

complexity for identification

Ah-counting Very low Basic I/O Poor SOC estimation,

+ OCV measurements cell balancing

Pack design, thermal management,

Equivalent Medium Easy/ EIS Good SOC and power estimation cell balancing,

circuit little difficult vehicle energy management,

charge management

Pack design, thermal management,

Electrochemical Medium-high Difficult Multi-level Good SOC, SOH and power estimation,

0D single-electrode cell balancing, vehicle energy management,

charge management

Pack design, thermal management

Electrochemical High Difficult Multi-level Good/high SOC, SOH and power estimation,

1D - pseudo2D single-electrode cell balancing, vehicle energy management,

charge, fast-charging management
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5 A CASE STUDY

In this section, a case study of an impedance model-

based BMS application is presented. An equivalent circuit

model was chosen because of the limitations to experiments

imposed by the cell manufacturer. A semi-automatic proce-

dure has been developed at IFP Energies nouvelles to obtain

a coherent EIS based model.

Experimental spectroscopy data are first collected, cov-

ering a large range of SOC and temperatures. A current

excitation waveform is applied to the system and the sys-

tem’s voltage response is monitored. All EIS measurements

are done in a galvanostatic mode at open circuit, permit-

ting, at the same time, the open circuit voltage characteriza-

tion. The current amplitude is adapted to obtain a potential

amplitude response under 10 mV, while the wave signal fre-

quency varies between 10 kHz and 5 mHz. Current ampli-

tude and the stationarity of the response signal are controlled

using an oscilloscope. For given SOC and temperature, an

impedance diagram collects the wave response at different

frequencies, in terms of real and imaginary part of the sys-

tem frequency response. The diagrams are analyzed and an

appropriate electric circuit is selected in order to reproduce

the experimental spectra. All the parameters of the equiv-

alent electric circuit are then automatically fitted from the

data, as a function of SOC and temperature. In order to

design the BMS, a time-domain model is required. Based

on the range of frequencies and on the impedance electric

equivalent elements, specific techniques have been elabo-

rated to approximate the frequency-domain element with a

resistor-capacitance network.

This procedure has been applied to a 22 Ah NCA/graphite

Li-ion cell in the framework of the collaborative project

HYDOLE, led by PSA Peugeot Citroën and funded by the

Agence de l’Environnement et de la Maîtrise de l’Energie
(ADEME). For this specific case, the selected frequency-

domain model is:

Z (s) = R0 +
Rct

1 + Rct Cdl s
+

1

Q sα
(17)

As an example, the experimental spectra are compared to

the fitted frequency domain model in Figures 2, 3 for two

couples of values of SOC and temperature.

The transposition to the time-domain model can be per-

formed by means of the fractional impedance representa-

tion method [48]. The CPE impedance is approximated by

a series of five resistor-capacitance circuits whose charac-

teristic times are computed in order to ensure a satisfying

accuracy in the limited frequency band [ωmin, ωmax] corre-

sponding to experimental frequencies range [25,49], i.e., for

this application, from 5 mHz to 10 kHz. Thus, the resulting

time-domain equivalent circuit model consists of an ohmic

resistor, a medium frequencies charge transfer resistor-

capacitance element and five resistor-capacitance elements
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Figure 2

Experimental EIS data at SOC = 0.53 and T = 293 K com-

pared to the frequency domain model.
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Experimental EIS data at SOC = 0.37 and T = 313 K com-

pared to the frequency domain model.

approximating the low frequencies diffusion effects. A state-

space formulation of the model can be expressed as:
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q̇ = 1
Cnom

Icell

V̇1 =
1

Cdl

(

Icell − V1

Rct

)

V̇d1
= 1

Cd1

(

Icell −
Vd1

Rd1

)

V̇d2
= 1

Cd2

(

Icell −
Vd2

Rd2

)

V̇d3
= 1

Cd3

(

Icell −
Vd3

Rd3

)

V̇d4
= 1

Cd4

(

Icell −
Vd4

Rd4

)

V̇d5
= 1

Cd5

(

Icell −
Vd5

Rd5

)

(18)

where Rdi and Cdi are the parameters of the resistor-

capacitance elements approximating the low frequencies
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Figure 4

Cell open circuit voltage, as a function of SOC and

temperature.

diffusion effects. Finally the cell voltage is computed as:

V = U0 + R0 Icell + V1 +

5
∑

i=1

Vdi (19)

where all the parameters are function of SOC and tempera-

ture and U0 is the open circuit voltage, obtained during the

cell characterization procedure and shown in Figure 4 for

some temperatures.

Figures 5, 6 show the performance of the model. Two

cycles were considered. The first one, in Figure 5, repro-

duces a typical automotive usage of a cell on an urban/extra-

urban driving cycle. The initial cell temperature was set to

298 K. The test in Figure 6 is a 1C rate charge/discharge

cycle with the cell temperature regulated at 292 K. It can be

noted that the average prediction error is less than 20 mV.

Based on the discretized version of this model an Extended

Kalman Filter (EKF) was designed to estimate the SOC and

cell overvoltages, according to:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x̂(k|k) = x̂(k|k − 1) + Te f (x̂(k|k − 1), u(k))+ Ke(k) e(k)

ŷ(k|k − 1) = V(x̂(k|k − 1), u(k))
(20)

where x̂ and ŷ are respectively the estimated state and out-

put, Te is the sampling period, e(k) is the prediction error

computed as:

e(k) = (y(k) − ŷ(k|k − 1)) (21)

f (·) is the nonlinear function deduced from (18) and V(·) is

the nonlinear output function (19). The notation F(k|k − 1)

indicates the a priori predicted variable F value and F(k|k)

the a posteriori updated variable F value. Ke(k) is the

Kalman gain, obtained through:

Ke(k) = Σ(k|k − 1) − Σ(k|k − 1) C(k)Ω(k) CT (k)Σ(k|k − 1)

(22)
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Figure 5

Cell voltage compared to the Lithium-ion cell model predic-

tion during an urban/extra-urban driving cycle.
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Figure 6

Cell voltage compared to the Lithium-ion model prediction

during a charge-discharge of the cell.

Ω(k) = [C(k)Σ(k|k − 1) CT (k) + R]−1 (23)

Σ(k + 1|k) = γ2 F(k)Σ(k|k) FT (k) + Q (24)

where Σ, the solution of the Riccati equation, is the covari-

ance matrix of the state error, γ is the forgetting factor,

varying between 0 and 1, F(k) is the dynamic matrix of

the linearized system, Q and R are the process and mea-

surements noises covariance matrices. As the model uncer-

tainties and the measurement noise are not known a priori,
Q and R are appropriately tuned off-line to minimize the

mean square error on the SOC. The estimation algorithm

performance is shown in Figures 7, 8. Figure 7 compares

the SOC estimation to an Ah counting correctly initialized,

as the SOC measurement is unavailable. As shown, the EKF

is able to recover the error of 35% in the initial conditions,

then to maintain the error in a limited band of ±2%. At the

same time, the EKF is also able to estimate the other state

components, i.e. the charge transfer and the diffusion over-

potentials. As an example the estimation of Vd1
is compared

to the correctly initialized model prediction in Figure 8.
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Figure 7

SOC estimation result during an urban/extra-urban driving

cycle test.
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Figure 8

Diffusion overpotential estimation result during an

urban/extra-urban driving cycle test.

CONCLUSION

A short review of the main modeling techniques for the

design of BMS for automotive application has been pre-

sented. Ah counting, circuit equivalent model-based and

electrochemical model-based SOC observers have been

considered, highlighting the impact of the cell model pre-

cision and complexity on the estimator performance. The

main advantages as well as the critical points have been

discussed. A case-test has been proposed to show the per-

formance of a complete procedure for the SOC estimator

design, from the cell characterization to the online experi-

mental test. The test includes several operating conditions.

The results of the experimental tests based on the data

collected on batteries testing facilities of IFP Energies nou-

velles show that the proposed procedure allows for a satis-

fying state of charge real time estimation, with an error of

about 2%.
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