
HAL Id: hal-00815707
https://ifp.hal.science/hal-00815707

Submitted on 19 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Prediction of Surfactants’ Properties using Multiscale
Molecular Modeling Tools: A Review

Benoît Creton, Carlos Nieto-Draghi, Nicolas Pannacci

To cite this version:
Benoît Creton, Carlos Nieto-Draghi, Nicolas Pannacci. Prediction of Surfactants’ Properties using
Multiscale Molecular Modeling Tools: A Review. Oil & Gas Science and Technology - Revue d’IFP
Energies nouvelles, 2012, 67 (6), pp.969-982. �10.2516/ogst/2012040�. �hal-00815707�

https://ifp.hal.science/hal-00815707
https://hal.archives-ouvertes.fr


Oil & Gas Science and Technology – Rev. IFP Energies nouvelles

Copyright c© 2013, IFP Energies nouvelles

DOI: 10.2516/ogst/2012040

Challenges and New Approaches in EOR
Défis et nouvelles approches en EOR

Prediction of Surfactants’ Properties using Multiscale
Molecular Modeling Tools: A Review

B. Creton, C. Nieto-Draghi and N. Pannacci

IFP Energies nouvelles, 1-4 Avenue de Bois-Préau, 92852 Rueil-Malmaison - France
e-mail: benoit.creton@ifpen.fr - carlos.nieto@ifpen.fr - nicolas.pannacci@ifpen.fr

Résumé — Prédiction de propriétés des tensioactifs à l’aide d’outils de modélisation

moléculaire : une revue — Une des voies possibles de récupération assistée du pétrole, l’EOR

(Enhanced Oil Recovery), consiste en l’injection d’un fluide ASP (Alkaline/Surfactant/Polymer) dans

le réservoir dans le but de déplacer le pétrole piégé vers le puits de production. La conception et/ou

l’optimisation de mélanges ASP, de tensioactifs ou de mélanges de tensioactifs est donc d’un intérêt

premier pour améliorer l’efficacité d’un tel procédé. Les codes de simulation moléculaire développés

et largement validés durant ces dernières décennies apparaissent comme des outils incontournables

pour la compréhension des effets microscopiques, la prédiction de propriétés de tensioactifs complexes

ou encore l’optimisation des structures voire de la composition de mélanges de tensioactifs. Dans cet

article, nous présentons une revue des travaux de la littérature sur le potentiel de diverses techniques

de simulation moléculaire pour la prédiction de propriétés structurales ou thermophysiques des ten-

sioactifs. Les techniques de simulation auxquelles nous nous sommes intéressés sont la dynamique

moléculaire (MD), les simulations Monte Carlo (MC), la dissipative particle dynamics (DPD) ainsi que

des approches statistiques faisant un lien direct entre structure et propriété (QSPR, pour Quantitative

Structure-Property Relationship).

Abstract — Prediction of Surfactants’ Properties using Multiscale Molecular Modeling Tools:

A Review — During one of the existing Enhanced Oil Recovery (EOR) procedures, a mixture of

Alkaline/Surfactant/Polymer (ASP) is injected into wells in order to move the trapped oil from the

reservoir to the wellbores. The conception and/or the tuning of new ASP combinations, structures

of surfactants and/or mixtures of surfactants is of primary interest to improve the efficiency of a such

procedure. Molecular modeling tools can be used to understand microscopic effects, predict surfac-

tants’ properties and finally to optimize structures and mixtures of surfactants. We propose in this

article a review of the literature on the ability of molecular simulation techniques such as Molecular

Dynamics (MD), Monte Carlo (MC) simulations, Dissipative Particle Dynamics (DPD) and upper scale

modeling methods such as Quantitative Structure-Property Relationship (QSPR) approaches to predict

thermo-physical and structural properties of surfactants.
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SYMBOLS AND ACRONYMS

ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Networks
ASP Alkaline/Surfactant/Polymer
CG Coarse Grained
CMC Critical Micelle Concentration
CTAB Cetyltrimethylammonium bromide
DFT Density Functional Theory
DPD Dissipative Particle Dynamics
EOR Enhanced Oil Recovery
F Fisher test value
FFS Forward Flux Sampling
GCMC Grand Canonical Monte Carlo
GFA Genetic Function Approximation
H Head groups in a surfactant
HLB Hydrophile-Lipophile Balance
HRM Histogram Reweighting Method
IFT Interfacial/surface Tension
MC Monte Carlo
MD Molecular Dynamics
MLR Multiple Linear Regression
PLS Partial Least Squares
QSPR Quantitative Structure-Property Relationship
R2 Coefficient of determination
S2 Standard error
SCFT Self-Consistent Field Theory
SCMF Single Chain Main-Field
SDS Sodium DodecylSulfate
SGMC Semi-Grand Canonical Monte Carlo
SHS Sodium HexylSulfate
SVM Support Vector Machines
T Tail groups in a surfactant
TA Test Area
WIM Wandering Interface Method

INTRODUCTION

The actual capacity of oil extraction still remains limited
and can be roughly estimated to 30-60%, or more, of the
reservoir’s original oil within the considered field [1]. The
production process is typically split into tree distinct phases:

– the primary recovery which is the consequence of natural
effects such as the pressure of the reservoir;

– the secondary recovery which consists in injecting water
or gas to move the oil to the wellbore;

– the tertiary recovery or Enhanced Oil Recovery (EOR),
which gathers techniques such as thermal recovery,
chemical or microbial injection [2-4].

The chemical injection technique can involve combina-
tions of Alkaline/Surfactant/Polymer (ASP) in which the
alkali reacts with some of the crude oil components decreas-
ing the water/oil InterFacial/surface Tension (IFT) [5]. Sur-
factants are used to reduce the water/oil IFT and the role of
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Figure 1

Multiscale molecular modeling tools from quantum mechanics
to mesoscale modeling.

the polymer is to improve the sweep efficiency. Although
this technique suffers from its relatively high cost mainly
due to injected chemicals’ cost, it becomes economically
viable when crude oil prices increase.

The optimization of the ASP combination to reservoir’s
characteristics such as the salinity, the temperature or the
type of rocks appears of primary interest when attempt-
ing to maximize the rate of oil recovery. This optimiza-
tion should profit from the systematic use of molecular
modeling tools developped and optimized during the last
decades. Indeed, in combination with recently developed
intermolecular potentials, molecular modeling tools can
provide precise information about microscopic phenomena
and lead to acurate estimation of thermophysical proper-
ties [6-10]. Figure 1 schematically represents the main
simulation techniques used to describe the matter from an
atomistic to a mesoscale level. The information that can
be extracted using these techniques vary from the level
of approximation,e.g. the explicit electronic description
of atoms is lost when using methods such as Molecular
Dynamics (MD), Monte Carlo (MC) or Dissipative Par-
ticle Dynamics (DPD). Furthermore, during last decades
a large number of studies has been devoted to statisti-
cally link structure and properties of molecules through so
called Quantitative Structure-Property Relationship (QSPR)
approaches [11]. The development of anin silico screen-
ing procedure combining cited methods could guide and
improve the efficiency of the selection of optimal surfac-
tants or mixtures of surfactants compared with the actual
required experiments [12]. An overview of the literature
content regarding applications of simulation techniques to
compute properties of surfactants is the first step of such a
tool development.

Surfactants are amphiphilic molecules, it means they con-
tain both nonpolar groups (“tail’’, labelled T) and polar
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groups (“head’’, labelled H). These two substructural fea-
tures indicate these compounds are both oil and water solu-
ble. The ratio of a surfactant hydropilicity to its hydropho-
bicity defines the Hydrophile-Lipophile Balance (HLB)
which mainly spreads in the range 0 to 40 indicating affinity
with water and oil, respectively. HLB is a tool developed
to classify surface active agents, widely used to quantify
physicochemical formulations of surfactant/water/oil sys-
tems (whatever the industrial field). At low concentration,
surfactant molecules exist as individual entities and are pref-
erentiallly located at the water/oil interface. The addition of
surfactants in a water/oil system causes the IFT decreasing.
Regarding EOR applications, IFT deals with elementary
physico-chemical values used to understand and optimize
ASP/SP processes. When the concentration of surfactants
increase, surfactants aggregate and form micelles having a
spherical shape. The concentration at which spherical mi-
celles occur is called the Critical Micelle Concentration
(CMC). Thus, CMC values of surfactants are used in EOR
applications to indicate whether the surfactant molecules are
aggregated or not. For some surfactants and concentration
above the CMC, micelles can evolve from spherical to cylin-
drical shapes, the concentration at which this phenomenon
occurs defines the second CMC.

The paper which is devoted to the prediction of surfactant
properties using molecular modeling tools is organized as
follows: in Section 1, we present how the use of techniques
such as MD and MC can lead to the prediction of IFT and
CMC; in Section 2, studies devoted to surfactants’ properties
using the DPD technique are presented; and in Section 3,
QSPR type models developed to predict CMC, IFT and HLB
of surfactants are listed and commented. This paper ends
with the conclusions and perspectives.

1 MOLECULAR DYNAMICS AND MONTE CARLO

SIMULATIONS

During the two last decades, complex systems containing
surfactants have been studied using molecular modeling
methods such as MD or MC. Although the computational
power has been increased using massive parallelized codes,
the simulation of the aggregation process of surfactants is
still a challenging task. An appropriate choice between a
continuous and detailed description of the space [13-17],
and the use of a lattice model with approximative descrip-
tions of solvant/surfactant molecule interactions is still
required [18-23]. One of the key tasks is the phase diagram
computation of systems containing surfactants. As there is
no evident phase transition between isolated surfactants and
micelles, the CMC value mainly depends on the definition
used. The most common one defines the CMC as the con-
centration where the number of aggregated surfactants is
half the total number of surfactants [24].
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Figure 2

Schematic representation of the evolution of the isolated sur-
factants concentration (X1) as a function of the total concen-
tration of surfactants (XT).

1.1 CMC Calculation

The CMC determination using molecular simulation tools
needs the computation ofP(N), the aggregation probabil-
ity of N molecules However, the minimum number of sur-
factants required to form a micelle is system dependent.
For instance, Sammalkorpiet al. [25] placed this limit at
7 molecules. It appears wiser to adjustP(N) to an analytical
Γ function according to:

P(N) =

(

1
β

CrΓ(α)

)

Nα−1e(−N/β) (1)

whereα, β andCr are three adjustable parameters. The con-
centration of isolated surfactants is defined as follows:

CCMC =
ns

V

6
∑

N=1

(N · P(N)) (2)

wherens is the total number of surfactants andV is the
volume of the system. The two weak points of this method
lies in the fact that the maximal size of the micelle is arbi-
trary and in the numerical criteria to determineP(N).

The CMC is also graphically accessible by representing
the concentration of isolated surfactants, (X1), as a function
of the total concentration of surfactants, (XT), see Figure 2.
Considering that above the CMC,X1 = f(XT) is a decreasing
linear function, the CMC can be defined as the intersection
of X1 = −mXT + b andX1 = XT/2 functions.

There are several works in the literature where MC
simulations have been performed in order to study sur-
factants’ aggregation and structure, as well as CMC cal-
culation [14, 22, 26-32]. For instance, Talsaniaet al. [26]
have used lattice Monte Carlo to explore the forma-
tion and stabilization of micelles with contaminants. Later,
Talsaniaet al. [27] have reproduced phase diagrams of



4 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles

surfactant/solute/solvent systems and studied the impact of
the hydrophobicity and the size of the solute. In 1997,
Mackieet al. [28] have compared the structure of micelles
and CMC computed using Monte Carlo simulations with
theoretical predictions based on the Single Chain Main-
Field (SCMF) theory. Thein silico formation of micelles
was studied by Florianoet al. [14] by the mean of Grand
Canonical MC (GCMC) simulations combined with the
Histogram Reweighting Method (HRM). In this work,
authors have shown an important variation of the osmotic
pressure around the CMC at low temperatures. In a similar
way, Pool and Bolhuis [29] have studied using Semi-Grand
Canonical Monte Carlo (SGMC) simulations of the free
energy of the formation of micelles for different surfactants
in a Lennard-Jones type solvent and computed CMC values
in agreement with experimental data. One can remark that
this methodology has been used again by Cavalloet al. [30]
and applied to the study of polymer aggregation. Futher-
more, Gharibiet al. [31] have shown that the addition of a
macromolecule such as a polymer have two consequences:

– the decrease of the CMC value;

– micelles having a more spherical shape compared with
systems without macromolecule, in agreement with
theoretical and experimental results.

Lísal et al. [22] have performed MC simulations of sur-
factant/solvent systems where the solvent is the supercriti-
cal CO2. Two structures of surfactants were studied H4T7

and H4T11, and several concentrations of surfactants were
considered. The analysis of the CMC for both surfactants
of interest have shown intervals where spherical, elongated
or egg-shape micelles occur in supercritical CO2. One can
also mentionned the works of Hashemianzadehet al.[32] in
which ionic surfactants have been modeled and electrostatic
interaction were included in the lattice model.

Molecular Dynamics simulations have been also used to
study and predict aggregation, structure and the CMC of
surfactants [25, 33-38, 40, 41]. Jorge [33] and Stephenson
et al. [34-36] have performed MD simulations to mimic
the aggregation processus of ionic and nonionic surfactants
in water. Simulations results have revealed a three-stage
evolution of micelles,i.e. monomer aggregation to form
oligomers, growing of oligomers and collisions between
micelles. Recently, MD simulations have been done to study
the CMC variations with the addition of salts such as NaCl
and CaCl2, for ionic surfactants such as sodium hexylsul-
fate (SHS) [25]. Particules size distribution and CMC values
agree with experimental data. The excess of CaCl2 modi-
fies the structure and properties of micelles, while excess
of NaCl does not drasticaly modify those properties. Sim-
ulations have also revealed micelles with ovoidal shapes
at high concentrations of Sodium DodecylSulfate (SDS).
Samantaet al. [37] have employed MD simulations to study
aggregation properties of multi-head surfactants. Authors
have considered various HLB by adding hydrophilic groups

in surfactants, the computed variations of the CMC and
size of micelles agree with experimental observations.
Maiti et al. [38] have developed a CG approach to model
dimer (also called gemini) and trimer of surfactants using
MD simulations observing the formation of a second CMC.
The CG model developed by Marrinket al. [39] has been
used by Burovet al. [40] and Sanderset al. [41] to compute
the CMC of ionic and zwitterionic surfactants, respectively,
through Equations (1) and (2).

1.2 IFT Calculation

The most common methods to compute of the IFT using
molecular simulations are based on mechanical laws
through pressure tensor calculation. The definition of IFT
given by Kirkwood and Buff, γKB, is presented in Equa-
tion (3) [42]:

γKB =
Lz

2
(PN − PT)

=
1

2A

〈N−1
∑

i=1

N
∑

j=i+1

r i j r i j − 3zi j zi j

2r i j

dU(r i j )

dri j

〉

(3)

where,Lz is the size of the simulation box along thez-axis,
PN andPT are the normal and tangential components of the
pressure tensor, respectively,A denotes the area between
surfaces,zi j is the z-axis component of ther i j distance
and U represents the intermolecular potential. Neverthe-
less, when systems with heterogenous densities are consid-
ered the long-range corrections approximated as constant
are no longer valid. Blokhuiset al. [43] have developed
specific long-ranged corrections based on the radial distribu-
tion function and the density profile fit using an hyperbolic
function.

Irving and Kirkwood [44] have proposed a definition of
the IFT based on the local components of the pressure ten-
sor, as expressed in Equation (4):

γIK =
1
2

∫ Lz

0
(PN(z) − PT (z)) dz (4)

In 1997, Guo and Lu [45] have developed long-ranged cor-
rections used in molecular simulation for internal energy,
pressure and IFT without any hypothesis on the den-
sity profile. In 2006, Janĕcek et al. [46] have proposed a
modification of Guo and Lu long-ranged corrections but
using a dependence with the local density profile. More
recently, MacDowell and Blas [47] proposed a modifica-
tion of Janĕceket al.’s long-ranged corrections without any
hypothesis on the density profile.

Under certain thermodynamic considerations, the inter-
facial tension can be expressed as the derivative of the
system free energy with respect to the surface area. Some
methods such as WIM (Wandering Interface Method) and
TA (Test Area) are based on these thermodynamic consid-
erations [48, 49]. For instance, TA consists in perturbing
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the surface area of the interface and to deduce the IFT value
from the associated free energy variation.

Molecular simulations have been used to study and pre-
dict interfacial tension of pure components and mixtures,
hereafter we focus on applications related to properties
of surfactant/water/hydrocarbon systems. Janget al. [50]
have studied the behavior of surfactants such as sulfonate
alkylbenzen in oil and the impact of the branching on
the IFT. Using molecular simulations, Maet al. [51] have
shown that surfactants such as the SDS decrease the IFT
at water/air interface. Stephenson and Beers [52] have per-
formed molecular dynamics simulations at fixed IFT for
various surfactants at water/air interface. Authors discussed
several properties such as the mean surface of surfactants
at the interface, the evolution of this surface with the IFT,
or density profile. In 1997, Urbina-Villalbaet al. [53] have
used MD simulations to study the variation of surface
energy and entropy of then-heptane/water system for differ-
ent temperatures and different concentrations of surfactants.
Three simulation boxes: one with the surfactant, one with
n-heptane and one with water, were studied separately and
energies of each simulation box were injected in a theoret-
ical model in order to link the molecular structure with the
IFT. In 2002, Da Rochaet al. [15] have studied the behav-
ior of an anionic surfactant at an H2O/CO2 interface. In a
similar way, Stoneet al.[16] have studied how fluorohydro-
carbon may stabilize an H2O/CO2 interface.

1.3 Winsor I-II-III Transition

The number of phases in a surfactant/brine/hydrocarbonsys-
tem depends upon the temperature, the surfactant concen-
tration and/or the salinity. The variation of these factors
induces phase transition known as the Winsor transition.
The Winsor I→ III → II transition is illustrated in Figure 3.
Behjatmanesh-Ardakani and Nikfetrat [54] have used Monte
Carlo simulations to qualitatively study the influence of the
temperature, the size ofH andT of surfactants and the oil on
these types of transition. Authors have shown that the IFT
between the oil and the water,γOW, is related to the lattice
energy and simulation results have shown that theγOW of
Winsor III is qualitatively similar to experimental data. The
structure modification between Winsor III→ I (or Winsor II)
presents an increase ofγOW in agreement with experimental
results.

2 DISSIPATIVE PARTICLE DYNAMICS SIMULATIONS

In the previous section, we have shown that the length and
time scales address by molecular simulations such as MC
and MD could be increased using a coarse grained descrip-
tion of compounds [39]. This higher level is also accessible
through dissipative particle dynamics which is in some way
a coarse grained type molecular simulation technique. This

φ = 2 φ = 3 φ = 2

Oil

droplets

in water

Winsor I Winsor III Winsor II

in excess
Oil

Water
in excess

Mixture

Oil

Water

droplets

in oil

Water

Figure 3

Winsor I→ III → II transition for a surfactant/water/oil system.
φ is the number of phases.

method was introduced by Hoogerbrugge and Koelman [55]
in 1992 and the technique was fully described by Groot and
Warren [56] in 1997. While the bases of the DPD are sim-
ilar to those of MD,i.e. the resolution of the equations of
motion, in DPD, forces applied on beadi can be summurized
as follows:

fi =
∑

j�i

(

FC
i j + FD

i j + FR
i j

)

(5)

where FC
i j , FD

i j , FR
i j are the conservative, dissipative and

random forces, respectively. To render anisotropy, some
authors have linked beads together using bonding (FBo

i j ) and
bending (FBe

i j ) forces [57].

2.1 CMC Calculation

In 2006, Pool and Bolhuis [58] attempted to predict the
CMC of surfactants using DPD simulations and a Lennard-
Jones type model. Authors have shown that the CMC can be
estimated with the Lennard-Jones type model with a good
agreement with respect to experimental data and that DPD
can only provide qualitative predictions of phase behavior.
Li and Dormidontova [59] havestudied the micellization
kinetics of dibloc copolymer molecules and shown predicted
CMC values, aggregation number and structures in agree-
ment with experimental data. The micellization time evolu-
tion is shown to follow three steps:

– monomer consumption;

– micelles number equilibration;

– small exchanges between micelles.

2.2 IFT Calculation

As presented in Equation (4), IFT can be computed integrat-
ing the difference between the normal and tangential pres-
sures. In the case of droplet, Dzwinel and Yuen [60] have
computed the IFT,γL, using the Laplace law as presented in
Equation (6)

2
R
γL = Pd − Pc (6)
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where R is the droplet’s radius, andPd and Pc are the
pressures in the disperse and continous phases, respectively.
Recently, Ghoufi and Malfreyt [61] have developed a local
pressure component formulation for the surface tension of
spherical interfaces.

Rekviget al. [62, 63] have used DPD simulations to pre-
dict IFT for different surfactant concentrations and the evo-
lution of the IFT of water/oil systems with the branching
of surfactants. Maiti and McGrother [64] have compared
results obtained using DPD simulations with experimen-
tal data for water/oil systems. Simulated results are in
agreement with experimental data. More recently, Ginzburg
et al. [65] have simulated IFT using DPD and Self-
Consistent Field Theory (SCFT) for a water/oil/nonionic
surfactants with a reasonable agreement with respect to
experimental data. Recently, Liet al. [66] have studied
oil/water systems with the CTAB surfactant and discussed
surface tension and mechanical interfacial properties.

2.3 Structure of Surfactants

Li et al.[67] as well as Moeendarbaryet al.[9,10] have pub-
lished reviews in which they present some of studies dealing
with the use of the DPD for the theoretical study of the
spatial arrangement of amphiphilic molecules in a solvant,
e.g. phase characterization,adsorption at the liquid/liquid
interfaces, behavior under flow, etc. In 1999, Juryet al. [68]
have performed DPD simulations for rigid dimers in conti-
nous phase of monomers. Later, Ryjkinaet al. [69] have
reproduced the experimental phase behavior of the dode-
cyldimethylamine oxide. In a similar way, Yanget al. [70]
have studied the phase organization of an anionic surfac-
tant in water. In the works of Illyaet al. [71] mechanical
properties of bilayers of amphiphilic moleculesHxTy are
investigated using DPD. Shillcock and Lipowsky [72] have
studied complex fluids such as bilayers of molecules, mem-
branes, vesicles by the mean of DPD simulations. Zhong
and Liu [73] have also studied complex micelles which
could be employed for metamaterials synthesis.

Regarding surfactant/water/hydrocarbon ternary systems,
Schulzet al. [74] have studied using DPD for the phase
diagram of a nonionic ethoxylate surfactant, C10E4, in water
and inn-octane. Authors have reproduced the conformation
changes, transition between a bicontinous structure and a
L3 phase, with the increase of the surfactant concentration.
Rekvig and Frenkel [57] and Rekviget al. [75] have studied
oil/water interfaces with surfactants adsorbed. For the non-
ionic surfactants chosen, the repulsion is mainly steric and
entropic. Studying repulsion forces between oil/water/oil
films for a given structure of the surfactant, authors are
able to recover Bancroft’s law stating that an emulsion is
stabilized if surfactant is made soluble in the continuous
phase [75]. Rekvig and Frenkel [57] have also worked
in 2007 on the influence of the morphology of the surfac-
tants on the coalescence in water/oil/surfactants systems.

DPD simulations associated with a Forward Flux Sampling
(FFS) method have allowed to follow the evolution of holes
in films. It was shown that surfactants with a positive curva-
ture permit a better stabilization of the water film,i.e. the oil
in water emulsion compared to surfactants with a negative
curvature.

In the following, we deal with surfactants interacting with
other species such as polymers, cosurfactants, etc., such sys-
tems being of great interest for industrial applications. In
2000, Groot [76] has studied a system containing a solvant,
a polymer and a surfactant. The end-to-end distance of the
polymer is shown to evolve with surfactant concentration:
at low concentrations, the end-to-end distance decreases
and then increases for concentrations above the CMC.
Different numerical simulationsapproaches concerning the
structure of surfactant and polymer are part of a review by Li
et al. [67]. In 2001, Groot and Rabone [77] obtained results
on damage to cell membranes due to nonionic surfactants
(C9E8, C10E8, C12E6) and compared their effects. Cosur-
factants (e.g. alcohols with small chain) are very interest-
ing to obtain stable microemulsions when added to water,
oil and surfactants systems. Such systems have been stud-
ied by Chenet al. [78] who have shown that DPD simu-
lations could match experimental phase diagram of a sys-
tem cetyltrimethylammonium bromide (CTAB)/1-butanol/
octane/water. In principle, DPD do not treat long range
interactions such as electrostatic ones. However electro-
static interactions may explain the organisation of a lot of
systems and most part of ionic (charged) surfactants are
concerned. Thus, different ways to implement electrostatics
in DPD can be found in the literature. Direct resolution of
the electrostatic field on a grid was proposed by Groot [79]
and gave results on the interactions between charged poly-
electrolytes and surfactants. Ewald method is an other way
of calculation shown by Gonzalezet al. [80], also used by
Ibergayet al. [81,82] for polyelectrolytes.

3 QUANTITATIVE STRUCTURE-PROPERTY

RELATIONSHIPS

The main objective of QSPR methodologies is to
relate features of molecules (molecular descriptors) with
experimental values of a property. It is important to mention
that the development of a QSPR model must be done with
great care, and the following paragraph provide some of
the key points [11, 83]. The keystones for the accuracy
of a predictive model are first the size and quality of the
database and second the calculation of relevant descrip-
tors. Compounds in the database must be representative of
chemical families targeted in the study. Property values
can be gathered from experimental measurements, chemical
databases or from the literature as long as they are self-
consistent to limit the statistical noise in the database.
Molecular structures of compounds in the database are
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drawn and geometries have to be optimized through the
same procedure. A large number of molecular descriptors
exists and have already been successfully used in correla-
tive models. Most of the time descriptors are properties or
constants of molecules or derived from empirical formula,
structural formula or spatial representation of molecules.
Descriptor combinations can also be done. The database is
split into two data subsets:

– the training set which is chosen to be representative of
the chemistry and the range of property values in the
database, is intended to the learning stage of the predic-
tive model;

– the test set is made up with the remaining molecules of the
database and these latter molecules are viewed as exter-
nal compounds and used to test the predictive power of
models.

Varied techniques have been developed to select the most
relevant descriptors and to relate them with the target prop-
erty through linear models such as Multilinear Regression
(MLR), Partial Least Squares (PLS) or non-linear models
such as Artificial Neural Networks (ANN), Support Vector
Machines (SVM), etc. For instance, the calculated property
value Pcalc. can be written as follows when modelled using
a multilinear model:

Pcalc. = λ0 +

n
∑

i=1

λiXi (7)

whereλi andXi denote coefficients and descriptors, respec-
tively. Accuracy of correlative models can be expressed
through various statistical coefficients such as the standard
error S2, the Fisher test valueF or the well-known coeffi-
cient of determination,R2 as defined in Equation (8) [84]:

R2 =

∑n
i=1(Pcalc.,i − 〈P〉)2

∑n
i=1(Pexp.,i − 〈P〉)2

(8)

wherei runs over then compounds in the data set,Pcalc.,
Pexp. and〈P〉 denote calculated, experimental and mean of
experimental property values, respectively.

Katritzki et al. [11] as well as Huet al. [85] have pub-
lished reviews in which they present some studies dealing
with the use of QSPR for the modeling of surfactant prop-
erties. Part of the information contained in both of these
reviews has been taken up and completed to build the sec-
tions hereafter.

3.1 CMC Prediction

The challenge of the theoretical determination of the CMC
has been starting since about 40 years. The first attempt
was performed by Rosen [86] who proposed a two terms
equation, similarly a three terms equation was published

TABLE 1

Statistical coefficients of QSPR models intended to the prediction of the
critical micelle concentration.n is the total number of compounds used
in the database,©, +© and -© stand for nonionic, cationic and anionic

surfactants, respectively

QSPR n R2 F S2 Ref.

©

MLR 23 0.980 1 042 – [97]

MLR 39 0.995 – 0.123 [92]

MLR 45 0.990 803 – [93]

MLR 50 0.989 391 0.236 [95]

MLR 54 0.907 – – [98]

MLR 77 0.984 1 433 0.031 [89]

MLR 77 0.903 131 – [94]

MLR 162 0.888 310 0.203 [96]

ANN 162 0.946 – 0.309 [96]

+©

MLR 23 0.993 1 477 0.102 [101]

MLR 30 0.954 69 0.220 [99]

MLR 50 0.977 380 0.019 [100]

ANN 50 0.974 – – [100]

-©

MLR 31 0.996 477 0.066 [102]

MLR 37 0.996 1 839 – [103]

MLR 98 0.980 1 505 0.011 [105]

MLR 119 0.940 597 0.047 [90]

MLR 119 0.871 – – [94]

MLR 133 0.976 5 360 0.014 [104]

PLS 175 0.951 562 0.040 [107]

MLR 181 0.926 412 0.058 [106]

by Becher [87] in 1984 and finally Raveyet al. [88] pro-
posed to add a nonlinear term to improve Becher’s equation
(see Eq. 9):

log CMC= A+ Bn+Cm+ Dnm (9)

wheren denotes the number of carbon atoms,m the ethy-
lene oxide number,A = 1.77, B = −0.52, C = 0.032 and
D = 0.002.

During the last decades, the number of published QSPR
studies have hugely increased, mainly due to the evolu-
tion of the computational power and to the development
of powerfull statistical approaches and softwares. The first
QSPR models for the prediction of the CMC were reported
by Huiberset al. who proposed equations for nonionic [89]
and anionic [90] surfactants. Both of these QSPR models
were obtained using MLR approach over a set of descrip-
tors based on molecular topology and constitution. Apart
from the work of Anouneet al.[91], QSPR models intended
to the CMC prediction were trained over specific chemical
families that are: nonionic [89, 92-98], cationic [99-101],
and anionic [90, 94, 102-107] surfactants. Table 1 presents
statistical coefficients of QSPR models listed in the litera-
ture. This table shows that most of these models have been
developed using MLR and we can remark that the size of
the database varied from few tens to less than two hundred
compounds. Katritzky [96] and Katritzkyet al. [100, 106]
have published the QSPR models for the CMC learned using
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the most comprehensive databases. In these two last works,
authors present comparisons between MLR and ANN
models. For nonionic surfactants [96], the ANN model is
reported to perform better than the four-descriptor based
MLR. In the case of cationic surfactants [100], the five-
descriptor multilinear model developed by Katritzkyet al.
shows comparable performance with respect to that of the
ANN model. Katritzkyet al. stated that their models are
reliable tools and consequently will be used to predict CMC
of similar surfactants. Note that some QSPR models have
also been developed for the prediction of the CMC of gemini
surfactants [108-110]. Bhhatarai and Gramatica [111] have
recently developed two MLR models for the prediction of
the CMC of perfluorinated chemicals, based on connectivity
indices and C-F bond numbers, respectively. The authors
have not split the database since it only contains 10 com-
pounds, reported statistical coefficients for these two models
are:R2 = 0.973,F = 293, andR2 = 0.936,F = 117.

3.2 IFT Prediction

Very few works have been published regarding the devel-
opment of QSPR models for the prediction of the interfa-
cial tension,γ, of surfactants. Wanget al. [112-114] who
are the main contributors in this area, have developed a
first QSPR model using a database including experimental
interfacial tension values at the CMC,γ0, for 30 nonionic
surfactants [112]. The two-descriptor based model can be
formulated as follows:

γ0pred. = 12.66− 0.01529× ∆H f + 0.6310× KHO

+ 0.0006576× ∆H f .KHO (10)

where∆H f and KHO denotes the heat of formation and
a topological descriptor, respectively. Authors returned an
R2 = 0.976 for Equation (10). In 2005, Wanget al. [114]
have proposed a new model using the same database and
new descriptors such as the number of oxygen atoms (NO)
in the hydrophile group,ET the total energy andD the
dipolar moment. For the resulting model which is given
by Equation (11), authors reported the following statistical
coefficients:R2 = 0.994,F = 188 andS2 = 0.530.

γ0pred. = 11.98− 0.01053× ∆H f + 0.5848× KHO

+ 0.09734× D + 0.4780× NO (11)

− 0.0007763× ET + 0.1345× NO.KHO

Wang et al. [113] have also investigated the prediction
of γ0 for anionic surfactants using a database which consits
of 34 experimental values measured for 20 anionic surfac-
tants at different temperatures,T. Authors proposed a five-
descriptor model including∆H f , D, KHO andC the counter
ion concentration and which accounts for the temperature
dependence of the property. The returned statistical coef-
ficients of Equation (12) are the following:R2 = 0.988,

TABLE 2

Statistical coefficients of QSPR models intended to the prediction of the
interfacial tension.n is the total number of compounds used in databases

QSPR n R2 F S2 Ref.

MLR 68(a) 0.986 845 0.200 [116]

MLR 68(a) 0.989 1 152 0.200 [116]

MLR 166(b) 0.983 – 0.400 [117, 118]

MLR 68(a) 0.976 – – [119]

MLR 199(b) 0.863 – – [121]
MLR 68(a) 0.959 199 0.410 [122]

MLR 320(b) 0.960 1 317 1.430 [123]

MLR 196(b) 0.783 – – [124]

SVM 196(b) 0.931 – – [124]

GFA 142(c) 0.980 – – [125]

ANFIS 142(c) 0.985 – – [125]

ANN 752(b) 0.997 – 0.020 [126]

ANN 1 604(b) 0.985 – 0.010 [127]

(a) alkanes,(b) organic compounds and(c) alcohols.

F = 56 andS2 = 0.013 and, since biases (shift and rotation)
were observed betweenγ0pred. andγ0exp. the authors proposed

the use of the regression Equation (13) leading toR2 = 0.994
andS2 = 0.07. Very recently, after performing experimen-
tal measurements on 24 ionic surfactants Finiet al. [115]
have developed a multilinear model for the prediction of the
n-decane/water IFT. Authors report the following statistical
coefficients:R2 = 0.930,F = 83, andS2 = 0.07:

γ0pred. = 27.71− 0.005239× ∆H f + 1.080× KHO

− 0.2130× D + 17.16×C (12)

− 0.1520× T

γ0pred. = 2.982+ 0.9199× γ0exp. (13)

A large number of works dealing with the development
of QSPR models for the prediction of the interfacial tension
for other chemical families has been reported in the litter-
ature [116-127]. These works are summurized in Table 2.
Since the beginning of the 90s, the size of databases used
for the development of models has increased and non-linear
methods seem to be preferred in the most recent studies.
In their last study, Gharagheiziet al. [127], have devel-
oped an ANN which accounts for the temperature depen-
dency of the interfacial tension, using a database containing
18 298 data belonging to experimental interfacial ten-
sion values of 1 604 compounds at different temperatures.
20 descriptors including the temperature and descriptors
based on molecular topology and constitution such as the
numbers of multiple bonds, of primary alcohols, etc., were
identified as most relevant for this study. The ANN was
trained over a test set which consists of 14 640 interfacial
tension data. Coefficients of determinationR2 = 0.985 were
reported by authors for both the training and test sets reveal-
ing a good ability of the model to predict IFT and showing
that there is no overfiting of the data.
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TABLE 3

Statistical coefficients of QSPR models intended to the prediction of the
HLB. n is the total number of compounds used in the database and©

and -© stand for nonionic and anionic surfactants, respectively

QSPR n R2 F S2 Ref.

©
MLR 39 0.982 1 031 1.052 [133]

MLR 90 0.984 629 0.476 [132]

-©

MLR 46 1.000 130 259 0.003 [131]

MLR 73 0.996 1 781 0.015 [131]

MLR 65 0.970 113 3.232 [134]

MLR 73 0.981 3 729 – [135]

ANN 73 0.996 17 323 – [135]

3.3 HLB Prediction

Since the end of the fifties, the HLB of surfactants can be
estimated using Equation (14), the Davies’ group contribu-
tion method [128]:

HLB = 7+
∑

(hydrophilic group contribution)

−
∑

(lipophilic group contribution) (14)

where, for instance, the last term represents the sum of
products of group number times the value associated to the
group. These later values can be found in the works of
Davies [128] and Lin and Marszall [129]. More recently,
an improvement of this equation has been proposed by
Guo et al. [130] using effective chain length instead of the
actual chain length. The so obtained group contribution was
used to compute HLB values for 224 nonionic surfactants.
Comparisons with experimental values have shown Average
Absolute Error (AAE) less than 1.5 which is much better
than the AAE of 7.3 obtained with the Davies’ equation.

Table 3 gathers statistical coefficients for some QSPR
models developed to predict the HLB of surfactants. Chen
et al. [131] have proposed two high performance QSPR
models for anionic surfactants: one for alkylsulfonates and
alkylsulfates compounds and the other for polyoxyethy-
lene, acetate, proprionate and fluorinated anionic surfac-
tants. Regarding the prediction of the HLB for nonionic sur-
factants, Gad and Khairou [133] have developed multilinear
regressions on the basis of various molecular descriptors
such as the dipole moment, the octanol/water partition coef-
ficient, the molar volume, etc. No work was found regarding
the HLB prediction for cationic surfactants using QSPR
methods.

CONCLUSIONS AND PERSPECTIVES

In previous sections, we have presented a review of recent
progress on the use of multiscale molecular modeling tools
for the prediction of surfactants’ properties. The feasibility
of the use of methods such as MD, MC, DPD and QSPR

for the prediction of the CMC, IFT and/or HLB has been
investigated.

Nearly none of the reported MD and MC studies have
been carried out with the purpose of an industrial applica-
tion and most of them have been done under academic con-
siderations. From a methodological point of view, most of
molecular simulations which use an atomistic description of
the systems have been performed through the MD technique
which is efficient for the sampling of dense phases. MC
simulations are more appropriate to the study of the aggre-
gation process, the kind and the shape of micelles. Most
of the reported MC simulations have been performed using
a lattice approach, with the drawback of the parameteriza-
tion including a physical meaning. One can remark that
works have proposed to overcome this problem using sim-
plified electrostatic interactions but the impact on later stud-
ies measured through the number of citations, still remains
negligible.

DPD simulations as a coarse-graining method allow sim-
ulations of large and complex systems. In particular, it is
shown that the method can give insights on spatial organi-
zation of surfactants, interesting mechanistic informations
for films evolution or trends on surface tensions regarding
structure of the adsorbed tensioactive molecules at an inter-
face. Even if ways of parameterizations of DPD simulations
are already proposed, a lot of work has yet to be done to
find robust and general methods to calculate input parame-
ters for valuable simulations of realistic systems. This chal-
lenge is one of the key conditions for a successful complete
multiscale modeling DPD aims to speed up the surfactant
screening process [136].

Statistical methods gathered under the acronym QSPR
appear as interesting tools to quickly estimate surfac-
tants’ properties. A series of models for properties such
as the CMC, IFT and the HLB have already been devel-
oped and have shown good predictive ability when applied
to an external set of amphiphiles,i.e. molecules outside
of the training set. Although the CMC has been exten-
sively studied through QSPR approaches, prediction could
be improved using larger databases and techniques leading
to non-linear models such as ANN or SVM. Few works
have been devoted to the IFT prediction for surfactants using
QSPR methods and this represents an interesting challenge
for the forthcoming years. Regarding the HLB prediction,
this work has put more emphasis on the need of larger
databases and on the lack of QSPR models for cationic
surfactants. It is also important to draw reader’s attention
to the fact that only properties of pure surfactants have
been considered in the literature while industrial products
are mostly mixtures of surfactants and the development of
QSPR models for mixtures belongs to challenges of forth-
coming years [137]. Finally, one can mention QSPR models
for the prediction of the toxicity of surfactants which were
developed on the basis of surfactant’s properties such as the
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HLB, the hydrophobicity (logP), the CMC or the number of
carbon atoms in the hydrophobic fragment [138,139].

ACKNOWLEDGMENTS

The authors wish to thank Dr. Bernard Rousseau,
Dr. Yannick Peysson and Dr. Benjamin Herzhaft for the
many useful discussions.

REFERENCES

1 Mohan K., Gupta R., Mohanty K.K. (2011) Wettability
altering secondary oil recovery in carbonate rocks,Energy
Fuels25, 3966-3973.

2 Brown L. (2010) Microbial Enhanced Oil Recovery (MEOR),
Curr. Opinion Microbiol.50, 316-320.

3 Sun S., Zhang Z., Luo Y., Zhong W., Xiao M., Yi W., Yu
L., Fu P. (2011) Exopolysaccharide production by a genet-
ically engineeredEnterobacter cloacaestrain for microbial
enhanced oil recovery,Bioresour. Technol.102, 6153-6158.

4 www.fossil.energy.gov

5 Samanta A., Ojha K., Mandal A. (2011) Interactions between
acidic crude oil and alkali and their effects on enhanced oil
recovery,Energy Fuels25, 1642-1649.

6 Gubbins K.E., Moore J.D. (2010) Molecular modeling of
matter: Impact and prospects in engineering,Ind. Eng. Chem.
Res.49, 3026-3046.

7 Theodorou D.N. (2010) Progress and outlook in Monte Carlo
simulations,Ind. Eng. Chem. Res.49, 3047-3058.

8 Maginn E.J., Elliott J.R. (2010) Historical perspective and
current outlook for molecular dynamics as a chemical engi-
neering tool,Ind. Eng. Chem. Res.49, 3059-3078.

9 Moeendarbary E., Ng T.Y., Zangeneh M. (2009) Dissipative
particle dynamics: Introduction, methodology and complex
fluid applications - A review,Int. J. Appl. Mech.1, 737-763.

10 Moeendarbary E., Ng T.Y., Zangeneh M. (2010) Dissipative
particle dynamics in soft matter and polymeric applications -
A review, Int. J. Appl. Mech.2, 161-190.

11 Katritzky A.R., Kuanar M., Slavov S., Hall C.D.,
Karelson M., Kahn I., Dobchev D.A. (2010) Quantitative cor-
relation of physical and chemical properties with chemical
structure: utility for prediction,Chem. Rev.110, 5714-5789.

12 Torres L., Moctezuma A., Avendaño J.R., Muñoz A.,
Gracida J. (2011) Comparison of bio- and synthetic surfac-
tants for EOR,J. Petrol. Sci. Eng.76, 6-11.

13 Viduna D., Milchev A., Binder K. (1998) Monte Carlo sim-
ulation of micelle formation in block copolymer solutions,
Macromol. Theory Simul.7, 649-658.

14 Floriano M.A., Caponetti E., Panagiotopoulos A.Z. (1999)
Micellization in model surfactant systems,Langmuir 15,
3143-3151.

15 da Rocha S.R.P., Johnston K.P., Rossky P.J. (2002)
Surfactant-modified CO2-water interface: A molecular view,
J. Phys. Chem. B106, 13250-13261.

16 Stone M.T., Rossky P.J., Johnston K.P. (2003) Water inter-
face,J. Phys. Chem. B107, 10185-10192.

17 Chanda J., Bandyopadhyay S. (2005) Molecular dynamics
study of a surfactant monolayer adsorbed at the air/water
interface,J. Chem. Theory Comput.1, 963-971.

18 Larson R.G., Scriven L.E., Davis H.T. (1985) Monte-Carlo
simulation of model amphiphilic oil-water systems,J. Chem.
Phys.83, 2411-2420.

19 Wijmans C.M., Linse P. (1995) Modeling of nonionic
micelles,Langmuir11, 3748-3756.

20 Kusaka I., Oxtoby D.W. (2001) A Monte Carlo simulation of
nucleation in amphiphilic solution,J. Chem. Phys.115, 4883-
4889.

21 Milchev A., Bhattacharya A., Binder K. (2001) Formation of
block copolymer micelles in solution: A Monte Carlo study
of chain length dependence,Macromolecules34, 1881-1893.

22 Lísal M., Hall C., Gubbins K.E., Panagiotopoulos A. (2002)
Micellar behavior in supercritical solvent-surfactant systems
from lattice Monte Carlo simulations,Fluid Phase Equilib.
194-197, 233-247.

23 Rodriguez-guadarrama L., Ramanathan S., Mohanty K.,
Vasquez V. (2004) Molecular modeling of binary mixtures of
amphiphiles in a lattice solution,Fluid Phase Equilib.226,
27-36.

24 Israelachvili J.N., Mitchell D.J., Ninham B.W. (1976) Theory
of self-assembly of hydrocarbon amphiphiles into micelles
and bilayers,J. Chem. Soc. Faraday Trans. 272, 1525-1568.

25 Sammalkorpi M., Sanders S., Panagiotopoulos A.Z.,
Karttunen M., Haataja M. (2011)Simulations of micellization
of sodium hexyl sulfate,J. Phys. Chem. B115, 1403-1410.

26 Talsania S., Wang Y., Rajagopalan R., Mohanty K. (1997)
Monte Carlo simulations for micellar encapsulation,J. Col-
loid Interface Sci.190, 92-103.

27 Talsania S.K., Rodríguez-Guadarrama L.A., Mohanty K.K.,
Rajagopalan R. (1998) Phase behavior and solubilization
in surfactant/solute/solvent systems by Monte Carlo simula-
tions,Langmuir14, 2684-2692.

28 Mackie A.D., Panagiotopoulos A.Z., Szleifer I. (1997) Aggre-
gation behavior of a lattice model for amphiphiles,Langmuir
13, 5022-5031.

29 Pool R., Bolhuis P.G. (2005) Accurate free energies of micelle
formation,J. Phys. Chem. B109, 6650-6657.

30 Cavallo A., Müller M., Binder K. (2006) Formation of
micelles in homopolymer-copolymer mixtures: A quantita-
tive comparison between simulations of long chains and self-
consistent field calculations,Macromolecules39, 9539-9550.

31 Gharibi H., Behjatmanesh-Ardakani R., Hashemianzadeh M.,
Mousavi-Khoshdel M. (2006) Complexation between a
macromolecule and an amphiphile by Monte Carlo technique,
J. Phys. Chem. B110, 13547-13553.



B Creton et al./ Prediction of Surfactants’Properties using Multiscale Molecular Modeling Tools: A Review 11

32 Hashemianzadeh S.M., Gharibi H., Mousavi-Khoshdel S.M.,
Sohrabi B., Safarpoor M.A.(2008) Lattice Monte Carlo sim-
ulation of dilute ionic surfactants,J. Mol. Liq.138, 147-154.

33 Jorge M. (2008) Molecular dynamics simulation of self-
assembly ofn-decyltrimethylammonium bromide micelles,
Langmuir24, 5714-5725.

34 Stephenson B.C., Beers K., Blankschtein D. (2006) Com-
plementary use of simulations and molecular-thermodynamic
theory to model micellization,Langmuir22, 1500-1513.

35 Stephenson B.C., Goldsipe A., Beers K.J., Blankschtein D.
(2007) Model for the micellization of nonionic surfactants in
aqueous solution,J. Phys. Chem. B111, 1045-1062.

36 Stephenson B.C., Goldsipe A., Blankschtein D. (2008)
Molecular dynamics simulation and thermodynamic
modeling of the self-assembly of the triterpenoids asiatic acid
and madecassic acid in aqueous solution,J. Phys. Chem. B
112, 2357-2371.

37 Samanta S.K., Bhattacharya S., Maiti P.K. (2009) Coarse-
grained molecular dynamics simulation of the aggrega-
tion properties of multiheaded cationic surfactants in water,
J. Phys. Chem. B113, 13545-13550.

38 Maiti P.K., Lansac Y., Glaser M.A., Clark N.A., Rouault Y.
(2002) Self-assembly in surfactant oligomers: A coarse-
grained description through molecular dynamics simulations,
Langmuir18, 1908-1918.

39 Marrink S.J., De Vries A.H., Mark A.E. (2004) Coarse
grained model for semiquantitative lipid simulations,J. Phys.
Chem. B108, 750-760.

40 Burov S.V., Vanin A.A., Brodskaya E.N. (2009) Principal role
of the stepwise aggregation mechanism in ionic surfactant
solutions near the critical micelle concentration. Molecular
dynamics study,J. Phys. Chem. B113, 10715-10720.

41 Sanders S.A., Panagiotopoulos A.Z. (2010) Micellization
behavior of coarse grained surfactant models,J. Chem. Phys.
132, 114902.

42 Kirkwood J.G., Buff F.P. (1949) The statistical mechanical
theory of surface tension,J. Chem. Phys.17, 338-343.

43 Blokhuis E.M., Bedeaux D., Holcomb C.D., Zollweg J.A.
(1995) Tail corrections to the surface-tension of a Lennard-
Jones liquid-vapor interface,Mol. Phys.85, 665-669.

44 Irving J.H., Kirkwood J.G. (1950) The statistical mechanical
theory of transport processes. IV. The equations of hydrody-
namics,J. Chem. Phys.18, 817-829.

45 Guo M., Lu B.C.-Y. (1997) Long range corrections to ther-
modynamic properties of inhomogeneous systems with planar
interfaces,J. Chem. Phys.106, 3688-3695.
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