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Résumé — Prédiction de propriétés des tensioactifs a D’aide d’outils de modélisation
moléculaire : une revue — Une des voies possibles de récupération assistée du pétrole, I’EOR
(Enhanced Oil Recovery), consiste en I’injection d’un fluide ASP (Alkaline/Surfactant/Polymer) dans
le réservoir dans le but de déplacer le pétrole piégé vers le puits de production. La conception et/ou
I’optimisation de mélanges ASP, de tensioactifs ou de mélanges de tensioactifs est donc d’un intérét
premier pour améliorer I’efficacité d’un tel procédé. Les codes de simulation moléculaire développés
et largement validés durant ces dernieres décennies apparaissent comme des outils incontournables
pour la compréhension des effets microscopiques, la prédiction de propriétés de tensioactifs complexes
ou encore I’optimisation des structures voire de la composition de mélanges de tensioactifs. Dans cet
article, nous présentons une revue des travaux de la littérature sur le potentiel de diverses techniques
de simulation moléculaire pour la prédiction de propriétés structurales ou thermophysiques des ten-
sioactifs. Les techniques de simulation auxquelles nous nous sommes intéressés sont la dynamique
moléculaire (MD), les simulations Monte Carlo (MC), la dissipative particle dynamics (DPD) ainsi que
des approches statistiques faisant un lien direct entre structure et propriété (QSPR, pour Quantitative
Structure-Property Relationship).

Abstract — Prediction of Surfactants’ Properties using Multiscale Molecular Modeling Tools:
A Review — During one of the existing Enhanced Oil Recovery (EOR) procedures, a mixture of
Alkaline/Surfactant/Polymer (ASP) is injected into wells in order to move the trapped oil from the
reservoir to the wellbores. The conception andfor the tuning of new ASP combinations, structures
of surfactants and/or mixtures of surfactants is of primary interest to improve the efficiency of a such
procedure. Molecular modeling tools can be used to understand microscopic effects, predict surfac-
tants’ properties and finally to optimize structures and mixtures of surfactants. We propose in this
article a review of the literature on the ability of molecular simulation techniques such as Molecular
Dynamics (MD), Monte Carlo (MC) simulations, Dissipative Particle Dynamics (DPD) and upper scale
modeling methods such as Quantitative Structure-Property Relationship (QSPR) approaches to predict
thermo-physical and structural properties of surfactants.
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SYMBOLS AND ACRONYMS o Dpa'e%%ca,e
moaelin
ANFIS Adaptive Neuro-Fuzzy Inference System ﬁ '_f
ANN  Artificial Neural Networks 2 ==
ASP AlkalingSurfactanPolymer 3 MD, MC o
CG Coarse Grained Mechanis
CMC Critical Micelle Concentration
CTAB  Cetyltrimethylammonium bromide "‘
DFT Density Functional Theory OF o=
DPD Dissipative Particle Dynamics __mechanics
EOR Enhanced Oil Recovery
F Fisher test value
FFS Forward Flux Sampling _
GCMC Grand Canonical Monte Carlo Time scale
GFA Genetic Function Approximation .
. Figure 1

H Head groups in a surfactant _ ' _
HLB Hydrophile-Lipophile Balance thgufg:gg;z;r:ﬁgﬂgﬁgodelmg tools from quantum mechanics
HRM Histogram Reweighting Method '
IFT Interfacialsurface Tension
MC Monte Carlo
MD Molecular Dynamics the polymer is to improve the sweeffieiency. Although
MLR Multiple Linear Regression this technique sffiers from its relatively high cost mainly
PLS Partial Least Squares due to injected chemicals’ cost, it becomes economically
QSPR  Quantitative Structure-Property Relationship  viable when crude oil prices increase.
R Cosficient of determination The optimization of the ASP combination to reservoir's
s? Standard error characteristics such as the salinity, the temperature or the
SCFT  Self-Consistent Field Theory type of rocks appears of primary interest when attempt-
SCMF  Single Chain Main-Field ing to maximize the rate of oil recovery. This optimiza-
SDS Sodium DodecylSulfate tion should profit from the systematic use of molecular
SGMC  Semi-Grand Canonical Monte Carlo modeling tools developped and optimized during the last
SHS Sodium HexylSulfate decades. Indeed, in combtien with recently developed
SVM  Support Vector Machines intermolecular potentials, molecular modeling tools can
T Tail groups in a surfactant provide precise information about microscopic phenomena
TA Test Area and lead to acurate estimation of thermophysical proper-
WIM  Wandering Interface Method ties [6-10]. Figure 1 schematically represents the main

simulation techniques used to describe the matter from an
INTRODUCTION atomistic to a mesoscale level. The information that can

be extracted using these techniques vary from the level

The actual capacity of oil extraction still remains limited Of approximation.e.g. the explicit electronic description
and can be roughly estimated to 30-60%, or more, of thef atoms is lost when using methods such as Molecular
reservoir’s original oil within the considered field [1]. The Dynamics (MD), Monte Carlo (MC) or Dissipative Par-
production process is typically splitinto tree distinct phasesticle Dynamics (DPD). Furthermore, during last decades
— the primary recovery which is the consequence of naturdt Iarge number of studies h"?‘s been devoted to statisti-
effects such as the pressure of the reservoir; cally link stru_ctu_re and properties of molecgles tk_lrough SO
. L called Quantitative Structure-Property Relationship (QSPR)
— the secondary recovery which consists in injecting Wateépproaches [11]. The development of iansilico screen-
or gas to move the oil to the wellbore; ing procedure combining cited methods could guide and
— the tertiary recovery or Enhanced Oil Recovery (EOR)improve the @iciency of the selection of optimal surfac-
which gathers techniques such as thermal recoveryants or mixtures of surfacté compared with the actual
chemical or microbial injection [2-4]. required experiments [12]. An overview of the literature
The chemical injection technique can involve combina-content regarding applications of simulation techniques to
tions of AlkalingSurfactantPolymer (ASP) in which the compute properties of surfactants is the first step of such a
alkali reacts with some of the crude oil components decreagool development.
ing the watefoil InterFaciajsurface Tension (IFT) [5]. Sur- Surfactants are amphiphilic molecules, it means they con-
factants are used to reduce the watiétFT and the role of tain both nonpolar groups (“tail”’, labelled T) and polar
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groups (“head”, labelled H). These two substructural fea- : :
tures indicate these compounds are both oil and water solu-

ble. The ratio of a surfactant hydropilicity to its hydropho- X =Xs
bicity defines the Hydrophile-Lipophile Balance (HLB)

which mainly spreads in the range 0 to 40 indicatifiiniy

with water and oil, respectively. HLB is a tool developed X,
to classify surface active agents, widely used to quantify
physicochemical formulations of surfactamateyoil sys-

tems (whatever the industrial field). At low concentration,
surfactant molecules exist as individual entities and are pref-
erentiallly located at the wat@il interface. The addition of
surfactants in a watggil system causes the IFT decreasing.
Regarding EOR applicationdFT deals with elementary
physico-chemical values used to understand and optimize  Figure 2

ASP/SP processes. When the centration Of_ Surfactant_s Schematic representation of the evolution of the isolated sur-
increase, surfactants aggregate and form micelles having a  factants concentratiorX¢) as a function of the total concen-
spherical shape. The concentration at which spherical mi-  tration of surfactantsXr).

celles occur is called the Critical Micelle Concentration
(CMC). Thus, CMC values of surfactants are used in EOR
applications to indicate wheghthe surfactant molecules are
aggregated or not. For some surfactants and concentratidn! CMC Calculation

above the CMC, micelles can evolve from spherical to cylin-The cMC determination using molecular simulation tools

drical shapes, the concentration at which this phenomengikeds the computation &(N), the aggregation probabil-

occurs defines the second CMC. ity of N molecules However, the minimum number of sur-
The paper which is devoted togtiprediction of surfactant factants required to form a micelle is system dependent.

properties using molecular modeling tools is organized agor instance, Sammalkorgt al. [25] placed this limit at

follows: in Section 1, we present how the use of techniqueg molecules. It appears wiser to adj@$N) to an analytical

such as MD and MC can lead to the prediction of IFT andr function according to:

CMC; in Section 2, studies devoted to surfactants’ properties

using the DPD technique are presented; and in Section 3, (1 a-1(-N/p)

QSPR type models developedto predict CMC, IFT and HLB P(N) = (Bcrr(a)) NTe @)

of surfactants are listed and commented. This paper ends .
with the conclusions and perspectives. wherea, § andC; are three adjustable parameters. The con-

centration of isolated surfactants is defined as follows:

6
n
1 MOLECULAR DYNAMICS AND MONTE CARLO CME = > (N-P(N)) 2)

SIMULATIONS =i

whereng is the total number of surfactants aMdis the
During the two last decadespmplex systems containing volume of the system. The two weak points of this method
surfactants have been studied using molecular modeliniges in the fact that the maximal size of the micelle is arbi-
methods such as MD or MC. Although the computationakrary and in the numerical criteria to determiBgN).
power has been increased using massive parallelized codes,The CMC is also graphically accessible by representing
the simulation of the aggregation process of surfactants ithe concentration of isolated surfactant$;)( as a function
still a challenging task. An appropriate choice between af the total concentration of surfactantX;rj, see Figure 2.
continuous and detailed description of the space [13-171Considering that above the CM&; = f(X1) is a decreasing
and the use of a lattice model with approximative descriptinear function, the CMC can be defined as the intersection
tions of solvansurfactant molecule interactions is still of X; = —-mX; + bandX; = X7/2 functions.
required [18-23]. One of the key tasks is the phase diagram There are several works in the literature where MC
computation of systems containing surfactants. As there isimulations have been performed in order to study sur-
no evident phase transition between isolated surfactants afactants’ aggregation and structure, as well as CMC cal-
micelles, the CMC value mainly depends on the definitionculation [14, 22, 26-32]. For instance, Talsaeiqal. [26]
used. The most common one defines the CMC as the coirave used lattice Monte Carlo to explore the forma-
centration where the number of aggregated surfactants t®n and stabilization of micelles with contaminants. Later,
half the total number of surfactants [24]. Talsaniaet al. [27] have reproduced phase diagrams of
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surfactanfsolutgsolvent systems and studied the impact ofin surfactants, the computed variations of the CMC and
the hydrophobicity and the size of the solute. In 1997 size of micelles agree with experimental observations.
Mackie et al. [28] have compared the structure of micellesMaiti et al. [38] have developed a CG approach to model
and CMC computed using Monte Carlo simulations withdimer (also called gemini) andimer of surfactants using
theoretical predictions based on the Single Chain MainMD simulations observing the formation of a second CMC.
Field (SCMF) theory. Thén silico formation of micelles The CG model developed by Marrirét al. [39] has been
was studied by Florianet al. [14] by the mean of Grand used by Buroet al.[40] and Sanderst al.[41] to compute
Canonical MC (GCMC) simulations combined with the the CMC of ionic and zwitterionic surfactants, respectively,
Histogram Reweighting Method (HRM). In this work, through Equations (1) and (2).

authors have shown an important variation of the osmotic

pressure around the CMC at low temperatures. In a similay,2 |FT Calculation

way, Pool and Bolhuis [29] have studied using Semi-Grand )
Canonical Monte Carlo (SGMC) simulations of the freeThe most common methods to compute of the_ IFT using
energy of the formation of micelles forftirent surfactants molecular simulations ar baset_j on mechgn_u_:al laws
in a Lennard-Jones type solvent and computed CMC valuethOUQh pressure tensor calculatpn. The deflnl.tlon of IFT
in agreement with experimental data. One can remark thatVen by Kirkwood and Bff, vs, is presented in Equa-
this methodology has been used again by Catli. [30] tion (3) [42]:

and applied to the study of polymer aggregation. Futher- L

more, Gharibiet al. [31] have shown that the addition of a KB = 7 (Pn = Pr)

macromolecule such as a polyme.r have two consequences: 1 NZ—:l ZN: it — 3275 dU(r)) -
— the decrease of the CMC value; = %A 2r; dn;

. . . . i=1 j=i+1
— micelles having a more spherical shape compared with '

systems without macromolecule, in agreement withwhere,L; is the size of the simulation box along thaxis,
theoretical and experimental results. Pn andPr are the normal and tangential components of the

Lisal et al. [22] have performed MC simulations of sur- Pressure tensor, respectivelfy,denotes the area between

factanfsolvent systems where the solvent is the supercritiSurfaces,z; is the z-axis component of the;; distance

cal CO.. Two structures of surfactants were studieglid  and U represents the intermolecular potential. Neverthe-

and HT1;, and several concentrations of surfactants werdess, when systems with heterogenous densities are consid-

considered. The analysis of the CMC for both surfactant§red the long-range corrections approximated as constant

of interest have shown intervals where spherical, elongatedf€ no longer valid. Blokhuist al. [43] have developed

or egg-shape micelles occur in supercritical C@ne can specific long-ranged corrections based on the radial distribu-

also mentionned the works of Hashemianzaetedd. [32] in tion f_unction and the density profile fit using an hyperbolic

which ionic surfactants have been modeled and electrostatfgnction.

interaction were included in the lattice model. Irving and Kirkwood [44] have proposed a definition of
Molecular Dynamics simulations have been also used tée IFT based on the local components of the pressure ten-

study and predict aggregation, structure and the CMC o0, @s expressed in Equation (4):

surfactants [25, 33-38, 40, 41]. Jorge [33] and Stephenson 1 [l

et al. [34-36] have performed MD simulations to mimic YiK = Ef (Pn(@) - Pr(2)dz 4)

the aggregation processus of ionic and nonionic surfactants 0

in water. Simulations results have revealed a three-staga 1997, Guo and Lu [45] have developed long-ranged cor-

evolution of micelles,i.e. monomer aggregation to form rections used in molecular simulation for internal energy,

oligomers, growing of oligomers and collisions betweenpressure and IFT without any hypothesis on the den-

micelles. Recently, MD simulations have been done to studgity profile. In 2006, Jariek et al. [46] have proposed a

the CMC variations with the addition of salts such as NaCimodification of Guo and Lu long-ranged corrections but

and CaCl, for ionic surfactants such as sodium hexylsul-using a dependence with the local density profile. More

fate (SHS) [25]. Particules size distribution and CMC valuegecently, MacDowell and Blas [47] proposed a modifica-

agree with experimental data. The excess of Gafbdi- tion of Janéeket al’s long-ranged corrections without any

fies the structure and properties of micelles, while exceskypothesis on the density profile.

of NaCl does not drasticaly modify those properties. Sim- Under certain thermodynamic considerations, the inter-

ulations have also revealed micelles with ovoidal shapefacial tension can be expressed as the derivative of the

at high concentrations of Sodium DodecylSulfate (SDS)system free energy with respect to the surface area. Some

Samantat al.[37] have employed MD simulations to study methods such as WIM (Wandering Interface Method) and

aggregation properties of multi-head surfactants. Author§A (Test Area) are based on these thermodynamic consid-

have considered various HLB by adding hydrophilic groupserations [48, 49]. For instance, TA consists in perturbing
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the surface area of the interface and to deduce the IFT value Winsor | Winsor 111 Winsor |1
from the associated free energy variation. oil .

Molecular simulations have been used to study and pre- in excess o
dict interfacial tension of pure components and mixtures,
hereafter we focus on applications related to properties -
of surfactanwaterhydrocarbon systems. Jaweg al. [50] Water
have studied the behavior of surfactants such as sulfonate Water in ExCess
alkylbenzen in oil and the impact of the branching on 0=2 5=3 9=2

the IFT. Using molecular simulations, Mgt al. [51] have
shown that surfactants such as the SDS decrease the IFT
at waterair interface. Stephenson and Beers [52] have per- ~ Figure 3

formed molecular dynamics simulations at fixed IFT for Winsor |- IIl — Il transition for a surfactajivateyoil system.

various surfactants at watair interface. Authors discussed ¢ is the number of phases.

several properties such as the mean surface of surfactants

at the interface, the evolutiorf this surface with the IFT,

or density profile. In 1997, Urbina-Villalbet al. [53] have  method was introduced by Hoogerbrugge and Koelman [55]
used MD simulations to study the variation of surfacein 1992 and the technique was fully described by Groot and
energy and entropy of theheptangvater system for dier-  Warren [56] in 1997. While the bases of the DPD are sim-
ent temperatures andfféirent concentrations of surfactants. ilar to those of MD,i.e. the resolution of the equations of
Three simulation boxes: one with the surfactant, one wittmotion, in DPD, forces applied on beachn be summurized
n-heptane and one with water, were studied separately argd follows:

energies of each simulation box were injected in a theoret- fi = Z (FI‘]: +FD+ Fff) (5)

ical model in order to link the molecular structure with the j#i

IFT. In 2002, Da Rochat al.[15] have studied the behav-
ior of an anionic surfactant at an,8/CGO, interface. In a
similar way, Stonest al.[16] have studied how fluorohydro-
carbon may stabilize anJ@/CO, interface.

where Fﬁ Fifj’, Ffje are the conservative, dissipative and
random forces, respectively. To render anisotropy, some
authors have linked beads together using bondﬁﬁ@)(and

bending £°) forces [57].

1.3 Winsor I-I-lll Transition .
2.1 CMC Calculation

The number of phases in a surfactannehydrocarbon sys-

tem depends upon the temperature, the surfactant concefi- 200?’ P?OI and Bo_thiS [58] _att?m_pted to predict the
tration andor the salinity. The variation of these factors CMC of surfactants using DPD simulations and a Lennard-

induces phase transition known as the Winsor transitior’©"€S type model. Authors have shown that the CMC can be
The Winsor I- Il — Il transition is illustrated in Figure 3. €Stimated with the Lennard-Jones type model with a good
Behjatmanesh-Ardakani and Nikfetrat [54] have used Mont@9reement with respect to experimental data and that DPD
Carlo simulations to qualitatively study the influence of theCan only provide qualitative predictions of phase behavior.
temperature, the size bfandT of surfactants and the oil on 1 @nd Dormidontova [59] havetudied the micellization
these types of transition. Authors have shown that the ”:-i(lne'[ICS of dibloc copoly_mer molecules and shown p_redlcted
between the oil and the watefeuw, is related to the lattice CMC values, aggregation number and structures in agree-
energy and simulation results have shown thatythg of r_nen_t with experimental data. The micellization time evolu-
Winsor Il is qualitatively similar to experimental data. The ti0N IS shown to follow three steps:

structure modification between Winsor 4 | (or WinsorIl) ~ — monomer consumption;

presents an increase@w in agreement with experimental _ micelles number equilibration;

results. .
— small exchanges between micelles.

2 DISSIPATIVE PARTICLE DYNAMICS SIMULATIONS 2.2 IFT Calculation

e scales address by molecuiar Smulations such a6 M3 (e dference between the normal and tangenial pres-
y ures. In the case of droplet, Dzwinel and Yuen [60] have

and MD could be increased using a coarse grained descrip- . )
tion of compounds [39]. This higher level is also accessible%%rﬂgt?;id(g;e IFTy, using the Laplace law as presented in
y

through dissipative particle dynamics which is in some wa;
a coarse grained type molecular simulation technique. This RYL=Pa—Pe (6)

gs presented in Equation (4), IFT can be computed integrat-
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where R is the droplet's radius, an®y and P. are the DPD simulations associated with a Forward Flux Sampling
pressures in the disperse and continous phases, respectivébiS) method have allowed to follow the evolution of holes
Recently, Ghoufi and Malfreyt [61] have developed a localn films. It was shown that surfactants with a positive curva-
pressure component formulation for the surface tension diure permit a better stabilization of the water filne, the oil
spherical interfaces. in water emulsion compared to surfactants with a negative
Rekviget al.[62, 63] have used DPD simulations to pre- curvature.
dict IFT for different surfactant concentrations and the evo- In the following, we deal with surfactants interacting with
lution of the IFT of watefoil systems with the branching other species such as polymers, cosurfactants, etc., such sys-
of surfactants. Maiti and McGrother [64] have comparedtems being of great interest for industrial applications. In
results obtained using DPD simulations with experimen2000, Groot [76] has studied a system containing a solvant,
tal data for watgpil systems. Simulated results are in a polymer and a surfactant. The end-to-end distance of the
agreement with experimental data. More recently, Ginzburgolymer is shown to evolve with surfactant concentration:
et al. [65] have simulated IFT using DPD and Self- at low concentrations, the end-to-end distance decreases
Consistent Field Theory (SCFT) for a wat@t/nonionic and then increases for concentrations above the CMC.
surfactants with a reasonable agreement with respect Wifferent numerical simulatiorepproaches concerning the
experimental data. Recently, let al. [66] have studied structure of surfactant and polymer are part of a review by Li
oil/water systems with the CTAB surfactant and discusseét al.[67]. In 2001, Groot and Rabone [77] obtained results

surface tension and mechanical interfacial properties. on damage to cell membranes due to nonionic surfactants
(CoEs, CioEs, Ci2Es) and compared theirfiects. Cosur-
2.3 Structure of Surfactants factants €.g. alcohols with small chain) are very interest-

] ing to obtain stable microemulsions when added to water,
Li etal.[67] as well as Moeendarbaey al. [9,10] have pub- |’ and surfactants systems. Such systems have been stud-
lished reviews in which they present some of studies dealing,4 by Chenet al. [78] who have shown that DPD simu-
with the use of the DPD for the theoretical study of the|4ions could match experimental phase diagram of a sys-

spatial arrangement of amphiphilic molecules in a solvantyy cetyltrimethylammonium bromide (CTAR)butano
e.g. phase characterizatioadsorption at the liqujtiquid octangwater. In principle, DPD do not treat long range

interfaces, behavior under flow, etc. In 1999, Jerl. [68]  interactions such as electrostatic ones. However electro-
have performed DPD simulations for rigid dimers in conti- static interactions may explain the organisation of a lot of
nous phase of monomers. Later, Ryjkieaal. [69] have  gystems and most part of ionic (charged) surfactants are
reproduced the experimental phase behavior of the dodgyncerned. Thus, fierent ways to implement electrostatics
cyldimethylamine oxide. In a similar way, Yareg al. [70] 5 ppD can be found in the literature. Direct resolution of
have_ studied the phase organization of an anlomc_surfa(fhe electrostatic field on a grid was proposed by Groot [79]
tant in water. In the works of llly@t al. [71] mechanical 514 gave results on the interactions between charged poly-

properties of bilayers of amphiphilic moleculéT, are  gjectrolytes and surfactants. Ewald method is an other way
investigated using DPD. Shillcock and Lipowsky [72] have y¢ calculation shown by Gonzalet al. [80], also used by
studied complex fluids such as bilayers of molecules, MeMpergayet al. [81, 82] for polyelectrolytes.

branes, vesicles by the mean of DPD simulations. Zhong
and Liu [73] have also studied complex micelles which
could be employed for metamaterials synthesis. 3 QUANTITATIVE STRUCTURE-PROPERTY

Regarding surfactafwateyhydrocarbonternary systems,  RELATIONSHIPS
Schulzet al. [74] have studied using DPD for the phase
diagram of a nonionic ethoxylate surfactanigE,;, inwater The main objective of QSPR methodologies is to
and inn-octane. Authors have repduced the conformation relate features of molecules (molecular descriptors) with
changes, transition between a bicontinous structure and experimental values of a property. It is important to mention
L3 phase, with the increase of the surfactant concentratiothat the development of a QSPR model must be done with
Rekvig and Frenkel [57] and Rekvag al.[75] have studied great care, and the following paragraph provide some of
oil/water interfaces with surfactants adsorbed. For the northe key points [11, 83]. The keystones for the accuracy
ionic surfactants chosen, the repulsion is mainly steric andf a predictive model are first the size and quality of the
entropic. Studying repulsion forces betweenvediteyoil  database and second the cédtion of relevant descrip-
films for a given structure of the surfactant, authors ardgors. Compounds in the database must be representative of
able to recover Bancroft's law stating that an emulsion ischemical families targeted in the study. Property values
stabilized if surfactant is made soluble in the continuousan be gathered from experimental measurements, chemical
phase [75]. Rekvig and Frenkel [57] have also workeddatabases or from the literature as long as they are self-
in 2007 on the influence of the morphology of the surfac-consistent to limit the statistical noise in the database.
tants on the coalescence in watdysurfactants systems. Molecular structures of compounds in the database are
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drawn and geometries have to be optimized through the TABLE 1

same procedure. A large number of molecular descriptorsSt_a_tistical_ cofficients of Q_SPR_modeIs intended to the prediction of the
exists and have already been successfully used in Correlagnncal micelle concentratiom is the total number of compounds used
. . . . in the database), @ and( stand for nonionic, cationic and anionic
tive models. Most of the time descriptors are properties or surfactants, respectively

constants of molecules or derived from empirical formula,

structural formula or spatial representation of molecules. QSPR| n R F s Ref.
Descriptor combinations can also be done. The database is MLR | 23 ) 0980 1042 - [97]
split into two data subsets: MLR | 39 1 0.995) -~ 1 0123 [92]
MLR | 45 | 0.990 | 803 - [93]

— the training set which is chosen to be representative of o MLR | 50 | 0.989| 391 | 0.236 | [95]
the chemistry and the range of property values in the MLR | 54 | 0.907 | - - [98]
database, is intended to the learning stage of the predic- MLR | 77 | 0.984 | 1433 | 0.031 | [89]
tive model; MLR | 77 | 0.903| 131 - [94]

. . i MLR | 162 | 0.888 | 310 | 0.203 || [96]

— the test setis made up with the remaining mplecules ofthe ANN | 162 | 0.046| - | 0.309 || [96]
database and these latter molecules are \{leyved as exter- MLR | 23 | 0.993 | 1477 | 0.102 || [101]
nal compounds and used to test the predictive power of MLR | 30 | 0.954| 69 | 0220 [09]
models. © | Mr | 50 | 0977 380 | 0.019 || [200]
Varied techniques have been developed to select the most ANN | 50 | 0.974] - - [100]
relevant descriptors and to relate them with the target prop- MLR | 31 | 0.996 | 477 | 0.066 | [102]
erty through linear models sh as Multilinear Regression MLR | 37 | 0.996 | 1839 | - (103]
(MLR), Partial Least Squares (PLS) or non-linear models MLR | 98 | 0.980| 1505 0.011 )| [105]
such as Artificial Neural Networks (ANN), Support Vector S} MLR | 119 ) 0.940 | 597 | 0.047 || [90]
Machines (SVM), etc. For instance, the calculated property mti EZ g'g;é 5;60 0 514 [[19;1]
;axjtﬁ}ﬁgaf?o%i I\{vrltten as follows when modelled using pLs | 175 | 0.951 | 562 | 0.040 || [207]
: MLR | 181 | 0.926 | 412 | 0.058 || [106]

n
Peaic = o+ ) kX (7) . .
) by Becher [87] in 1984 and finally Ravest al. [88] pro-

posed to add a nonlinear term to improve Becher’s equation
whereh; andX; denote cofficients and descriptors, respec- (see Eq. &
tively. Accuracy of correlative models can be expressed
through various statistical cfigients such as the standard logCMC = A+ Bn+Cm+ Dnm 9)
error S2, the Fisher test valuE or the well-known coffi-

cient of determinatiori? as defined in Equation (8) [84]: wheren denotes the number of carbon atonma,the ethy-

lene oxide numberA = 1.77,B = -0.52,C = 0.032 and
_ni P L <P> 2 D = 0002

R = é{,{lipcalc’_' - <P>;2 (8) During the last decades, the number of published QSPR
=110 expl studies have hugely increased, mainly due to the evolu-

wherei runs over then compounds in the data sePea, tion of the com_pu_tational power and to the developmgnt

Pexp and (P) denote calculated, experimental and mean off powerfull statistical approaches and softwares. The first

experimental property values, respectively. QSPR models for the prediction of the CMC were reported
Katritzki et al. [11] as well as Het al. [85] have pub- by Huiberset al. who proposed equations for nonionic [89]

lished reviews in which they present some studies dealin§nd anionic [90] surfactants. Both of these QSPR models

with the use of QSPR for the modeling of surfactant prop-Were obtained using MLR approach over a set of descrip-

erties. Part of the information contained in both of thesd©'S based on molecular topology and constitution. Apart

reviews has been taken up and completed to build the sef0m the work of Anounet al. [91], QSPR models intended
tions hereafter. to the CMC prediction were tinaed over specific chemical

families that are: nonionic89, 92-98], cationic [99-101],

and anionic [90, 94, 102-107] surfactants. Table 1 presents
3.1 CMC Prediction statistical cofficients of QSPR models listed in the litera-

ture. This table shows that most of these models have been
The challenge of the theoretical determination of the CMCdeveloped using MLR and we can remark that the size of
has been starting since about 40 years. The first attemphie database varied from few tens to less than two hundred
was performed by Rosen [86] who proposed a two termsompounds. Katritzky [96] and Katritzkgt al. [100, 106]
equation, similarly a three terms equation was publishetiave published the QSPR models for the CMC learned using
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the most comprehensive databases. In these two last works, TABLE 2

authors present comparisons between MLR and ANN Statistical cofficients of QSPR models intended to the prediction of the
models. For nonionic surfactants [96], the ANN model is interfacial tensionn is the total number of compounds used in databases

reported to perform better than the four-descriptor based | QSPR n R? F s? Ref.
MLR. In the case of cationic surfactants [100], the five- MLR 68® | 0.986 | 845 | 0.200 [116]
descriptor multilinear model developed by Katritz&y al. MLR 689 | 0,989 | 1152 | 0.200 [116]
shows comparable performance with respect to that of the | MLR | 166" | 0983 | — | 0.400 || [117,118]
ANN model. Katritzkyet al. stated that their models are MLR 68 | 0.976 | - - [119]
MLR 1999 | 0.863| - - [121]

reliable tools and consequently will be used to predict CMC

of similar surfactants. Note that some QSPR models have MLR 68(62) 0.9591 199 | 0.410 (122]

also been developed for the prediction of the CMC of gemini mti i;gb) 8'322 13171 1.430 [Ei]
surfactants [108-110]. Bhhatarai and Gramatica [111] have | o v | Jogn | 0931 - - {124}

recently developed two MLR mpdels for the pred|ct|on. qf GFA | 1449 | 09so| - B [125]

.the'CMC of perfluorinated chemicals, ba;ed onconnectivity | aneis | 1429 | 0085 | - _ [125]

indices and C-F bond numbers, respectively. The authors | asnn | 75200 | 0997 | - | 0020 [126]

have not split the database since it only contains 10 com- | ann | 1604 | 0985 | - 0.010 [127]

pounds, reported statistical dieients for these two models

are:R2 = 0.973,F = 293, and=2 = 0.936,F = 117. @ alkanes® organic compounds ar#l alcohols.

3.2 IFT Prediction F = 56 andS? = 0.013 and, since biases (shift and rotation)

0
Very few works have been published regarding the devel\t—/;l]zrjsoeb;et ::?ebi\’:z?:? ir;?;({) er):? ig)elzzg:fgtzrggc;zed
opment of QSPR models for the prediction of the interfa- 5 g q . .
cial tension,y, of surfactants. Wangt al. [112-114] who andS* = 0.07. Very recen_tly,_after performmg experimen-
are the main contributors in this area, have developed EI measurements on .2.4 lonic surfactants 'é‘“a.'- [115]
ave developed a multilinear model for the prediction of the

first QSPR model using a database including experiment . I
. : . S n-decangwater IFT. Authors report the following statistical
interfacial tension values at the CM€;, for 30 nonionic :

% (éoacﬁments:R2 = 0.930,F = 83, andS? = 0.07:

surfactants [112]. The two-descriptor based model can b

formulated as follows: Ve = 27.71- 0.005239x AH; + 1.080x KHO
Y9req = 1266 0.01529x AH; + 0.6310x KHO —02130xD +1716xC (12)
+0.0006576x AH{.KHO (10) -0.1520xT
0 _ 0
where AH; and KHO denotes the heat of formation and Vpred = 2982+ 0.9199x vey, (13)

a topological descriptor, respectively. Authors returned an A large number of works dealing with the development
R? = 0.976 for Equation (10). In 2005, Wareg al.[114]  of QSPR models for the prediction of the interfacial tension
have proposed a new model using the same database afad other chemical families has been reported in the litter-
new descriptors such as the number of oxygen atdWi®) (  ature [116-127]. These works are summurized in Table 2.
in the hydrophile groupEr the total energy andd the  Since the beginning of the 90s, the size of databases used
dipolar moment. For the resulting model which is givenfor the development of models has increased and non-linear
by Equation (11), authors reported the following statisticalmethods seem to be preferred in the most recent studies.

codficients:R? = 0.994,F = 188 andS? = 0.530. In their last study, Gharagheizt al. [127], have devel-
0 oped an ANN which accounts for the temperature depen-
Yprea = 11.98—0.01053x AH¢ +0.5848x KHO dency of the interfacial tension, using a database containing
+ 0.09734x D + 0.4780x NO (11) 18298 data belonging to experimental interfacial ten-
—0.0007763« E + 0.1345x NO.KHO sion values of 1604 compounds affdient temperatures.

20 descriptors including the temperature and descriptors

Wanget al. [113] have also investigated the prediction based on molecular topology and constitution such as the
of v for anionic surfactants using a database which consiteumbers of multiple bonds, of priary alcohols, etc., were
of 34 experimental values measured for 20 anionic surfaddentified as most relevant for this study. The ANN was
tants at diferent temperature§,. Authors proposed a five- trained over a test set which consists of 14 640 interfacial
descriptor model includingH¢, D, KHO andC the counter tension data. Cd&cients of determinatioR? = 0.985 were
ion concentration and which accounts for the temperatureeported by authors for both the training and test sets reveal-
dependence of the property. The returned statistical coefng a good ability of the model to predict IFT and showing
ficients of Equation (12) are the following®? = 0.988, that there is no overfiting of the data.
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TABLE 3 for the prediction of the CMC, IFT aridr HLB has been
Statistical co#ficients of QSPR models intended to the prediction of the in\/estigated_

HLB. nis the total number of compounds used in the databas€and .
and© stand for nonionic and anionic surfactants, respectively Nearly none of the reported MD and MC studies have

5 been carried out with the purpose of an industrial applica-
QSPR | n R F S Ref. tion and most of them have been done under academic con-
o) MLR | 39| 0982 1031 | 1052 [133] siderations. From a methodological point of view, most of
MLR | 90 | 0.984 | 629 | 0.476 || [132] : : . o -
MLR | 46 | 1.000| 130259 | 0.003 || [131] molecular simulations which use an atomistic descrlptlon_ of
MLR | 73 | 0996 | 1781 | 0.015 || [31] the_sys_tems have been performgd through the MD technique
o wr | 65 | 0970 113 3.232 || [134] Whlch is dficient for the sam_plmg of dense phases. MC
MR | 73 | 0981 | 3729 B [135] S|m.ulat|ons are more gppropnate to the study.of the aggre-
ANN | 73 | 0.996 | 17323 _ [135] gation process, the kind and the shape of micelles. Most
of the reported MC simulations have been performed using
a lattice approach, with the drawback of the parameteriza-
3.3 HLB Prediction tion including a physical meaning. One can remark that
works have proposed to overcome this problem using sim-
Since the end of the fifties, the HLB of surfactants can beplified electrostatic interactions but the impact on later stud-
estimated using Equation (14), the Davies’ group contribuies measured through the number of citations, still remains
tion method [128]: negligible.
. o DPD simulations as a coarse-graining method allow sim-
HLB =7+ Z (hydrophilic group contribution) ulations of large and complex systems. In particular, it is
- Z (lipophilic group contribution) (14) shown that the method can give insights on spatial organi-
zation of surfactants, interttsg mechanistic informations
where, for instance, the last term represents the sum &@r films evolution or trends on surface tensions regarding
products of group number times the value associated to thgructure of the adsorbed tensioactive molecules at an inter-
group. These later values can be found in the works oface. Even if ways of parameteations of D simulations
Davies [128] and Lin and Marszall [129]. More recently, are already proposed, a lot of work has yet to be done to
an improvement of this equation has been proposed bfjnd robust and general methods to calculate input parame-
Guoet al.[130] using dfective chain length instead of the ters for valuable simulations of realistic systems. This chal-
actual chain length. The so obtained group contribution waknge is one of the key conditions for a successful complete
used to compute HLB values for 224 nonionic surfactantsmultiscale modeling DPD aims to speed up the surfactant
Comparisons with experimental values have shown Averaggcreening process [136].
Absolute Error (AAE) less than 1.5 which is much better  Statistical methods gathered under the acronym QSPR
than the AAE of 7.3 obtained with the Davies’ equation. appear as interesting tools to quickly estimate surfac-
Table 3 gathers statistical diieients for some QSPR tants’ properties. A series of models for properties such
models developed to predict the HLB of surfactants. Chems the CMC, IFT and the HLB have already been devel-
et al. [131] have proposed two high performance QSPRoped and have shown good predictive ability when applied
models for anionic surfactants: one for alkylsulfonates ando an external set of amphiphilese. molecules outside
alkylsulfates compounds and the other for polyoxyethy-of the training set. Although the CMC has been exten-
lene, acetate, proprionate daffluorinated anionic surfac- sively studied through QSPR approaches, prediction could
tants. Regarding the prediction of the HLB for nonionic sur-be improved using larger databases and techniques leading
factants, Gad and Khairod33] have develped multilinear to non-linear models such as ANN or SVM. Few works
regressions on the basis of various molecular descriptotsave been devoted to the IFT prediction for surfactants using
such as the dipole moment, the octanalter partition coef- QSPR methods and this represents an interesting challenge
ficient, the molar volume, etc. No work was found regardingfor the forthcoming years. Regarding the HLB prediction,
the HLB prediction for cationic surfactants using QSPRthis work has put more emphasis on the need of larger
methods. databases and on the lack of QSPR models for cationic
surfactants. It is also important to draw reader’s attention
to the fact that only properties of pure surfactants have
CONCLUSIONS AND PERSPECTIVES been considered in the litatme while industrial products
are mostly mixtures of surfactants and the development of
In previous sections, we have presented a review of receQSPR models for mixtures belongs to challenges of forth-
progress on the use of multiscale molecular modeling toolsoming years [137]. Finally, one can mention QSPR models
for the prediction of surfactants’ properties. The feasibilityfor the prediction of the toxicity of surfactants which were
of the use of methods such as MD, MC, DPD and QSPRieveloped on the basis of surfactant’s properties such as the
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HLB, the hydrophobicity (lod?), the CMC or the number of
carbon atoms in the hydrophobic fragment [138, 139].
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