F. J. Floris, M. D. Bush, M. Cuypers, F. Roggero, and A. R. Syversveen, Methods for quantifying the uncertainty of production forecasts: a comparative study, Petroleum Geoscience, vol.7, issue.S, pp.87-96, 2001.
DOI : 10.1144/petgeo.7.S.S87

M. D. Morris, Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, vol.1, issue.2, pp.161-74, 1991.
DOI : 10.2307/1266468

D. Busby, Hierarchical adaptive experimental design for Gaussian process emulators, Reliability Engineering & System Safety, vol.94, issue.7, pp.1183-1193, 2009.
DOI : 10.1016/j.ress.2008.07.007

M. Schonlau, Computer Experiments and Global Optimization, Thèse, 1997.

D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

M. Feraille and F. Roggero, Uncertainty quantification for mature field combining the Bayesian inversion formalism and experimental design approach, ECMOR IX, 2004.

D. Busby and M. Feraille, Adaptive Design of Experiments for Bayesian Inversion ? An Application to Uncertainty Quantification of a Mature Oil Field, J, vol.135, issue.1, pp.10-1088, 2008.

M. Feraille and D. Busby, Uncertainty management on a reservoir workflow, International Petroleum Technology Conference, December. 18 Tarantola A. (2005) Inverse Problem Theory and Methods for Model Parameter Estimation, pp.7-9, 2009.

I. Zabalza-mezghani, E. Manceau, M. Feraille, and A. Jourdan, Uncertainty management: From geological scenarios to production scheme optimization, Journal of Petroleum Science and Engineering, vol.44, issue.1-2, pp.11-25, 2004.
DOI : 10.1016/j.petrol.2004.02.002

B. Efron and C. Stein, The Jackknife Estimate of Variance, The Annals of Statistics, vol.9, issue.3, pp.586-596, 1981.
DOI : 10.1214/aos/1176345462

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety, vol.52, issue.1, pp.1-17, 1996.
DOI : 10.1016/0951-8320(96)00002-6

W. Welch, R. Buck, J. Sacks, H. Wynn, T. Mitchell et al., Screening, Predicting, and Computer Experiments, Technometrics, vol.34, issue.1, pp.15-25, 1992.
DOI : 10.2307/1269548

J. Oakley and A. O-'hagan, Bayesian inference for the uncertainty distribution of computer model outputs, Biometrika, vol.89, issue.4, pp.769-784, 2002.
DOI : 10.1093/biomet/89.4.769

M. D. Mckay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, issue.2, pp.239-245, 1979.

K. T. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, p.9781584885467, 2005.
DOI : 10.1201/9781420034899

M. D. Morris and T. J. Mitchell, Exploratory designs for computational experiments, Journal of Statistical Planning and Inference, vol.43, issue.3, pp.381-402, 1995.
DOI : 10.1016/0378-3758(94)00035-T

B. Iooss, Revue sur l'analyse de sensibilité globale de modèles numériques, Journal de la Société Française de Statistique, vol.152, issue.1, pp.3-25, 2011.

A. Marrel, B. Iooss, B. Laurent, and O. Roustant, Calculations of Sobol indices for the Gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, 2009.
DOI : 10.1016/j.ress.2008.07.008

URL : https://hal.archives-ouvertes.fr/hal-00239494

C. B. Storlie, L. P. Swiler, J. C. Helton, and C. J. Salaberry, Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliability Engineering & System Safety, vol.94, issue.11, pp.1735-1763, 2010.
DOI : 10.1016/j.ress.2009.05.007