Detailed modeling of the evaporation and thermal decomposition of urea-water-solution in SCR systems.
Vahid Ebrahimian, Andre Nicolle, Chawki Habchi

To cite this version:
Vahid Ebrahimian, Andre Nicolle, Chawki Habchi. Detailed modeling of the evaporation and thermal decomposition of urea-water-solution in SCR systems.. 2012. <hal-00716480>

HAL Id: hal-00716480
https://hal-ifp.archives-ouvertes.fr/hal-00716480
Submitted on 10 Jul 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Detailed modeling of the evaporation and thermal decomposition of urea-water-solution in SCR systems

Vahid Ebrahimian, Andre Nicolle*, Chawki Habchi

IFP Energies nouvelles,
1 – 4, avenue de Bois-Préau,
92852 Rueil-Malmaison Cedex – France

*: correspondence concerning this article should be addressed to Dr. Nicolle
(andre.nicolle@ifpen.fr)

Submitted for publication as a full-length research article in AIChE Journal.

Keywords: Multi-component, evaporation, UWS, Adbue, urea decomposition, thermolysis, SCR, kinetics

Abstract

This work aims to develop a multi-component evaporation model for droplets of urea-water-solution (UWS) and a thermal decomposition model of urea for automotive exhausts using the Selective Catalytic Reduction (SCR) systems. In the multi-component evaporation model, the influence of urea on the UWS evaporation is taken into account using a NRTL activity model. The thermal decomposition model is based on a semi-detailed kinetic scheme accounting not only for the production of ammonia (NH$_3$) and isocyanic acid (HNC0), but also for the formation of heavier solid by-products (biuret, cyanuric acid and ammelide). This kinetics model has been validated against gaseous data as well as solid-phase concentration profiles obtained by Lundstroem et al. (2009) and Schaber et al. (2004). Both models have been implemented in IFP-C3D industrial software in order to simulate UWS droplet evaporation and decomposition as well as the formation of solid by-products. It has been shown that the presence of the urea solute has a small influence on the water evaporation rate, but its effect on the UWS temperature is significant. In addition, the contributions of hydrolysis and thermolysis to urea decomposition have been assessed. Finally, the impacts of the heating rate as well as gas-phase chemistry on urea decomposition pathways have been studied in detail. It has been shown that reducing the heating rate of the UWS causes the extent of the polymerization to decrease because of the higher activation energy.

Introduction

Selective Catalytic Reduction (SCR) is one of the most promising techniques for the abatement of the nitrogen oxides (NOx) emissions from lean-burn engines. For reasons of safety and toxicity, urea is the preferred selective reducing agent for mobile SCR applications.
Urea is typically being used as an aqueous solution at its eutectic composition (32.5% wt. urea, marketed as Adblue®).

In a typical SCR system, urea-water-solution (UWS) is sprayed into the hot engine exhaust upstream of the SCR catalyst. It is commonly believed that water evaporates first [3] and the remaining solid urea then melts and decomposes into gas phase ammonia (NH₃) and isocyanic acid (HNCO). However, urea decomposition in aqueous solution occurs in the same temperature range as water evaporation [4].

Evaporation phenomena for hydrocarbons have been widely investigated experimentally and numerically during the past decades [5-10]. Evaporation of UWS is a little more complicated compared to the hydrocarbons evaporation due to the interaction of urea solute in water. When injected into the exhaust hot gases, UWS droplets undergo heating which leads to a progressive increase of urea concentration inside the droplet during the evaporation process. The effects of solute on evaporation of droplets have been studied by Basu and Cetegen [11]. They modeled liquid ceramic precursor droplets (composed of water and zirconium acetate) axially injected into plasma. As water evaporates, the concentration of solute augments which leads to the formation of a precipitate shell. They studied the effects of droplet size, shell porosity and thickness and they shown different behaviors of droplet for different conditions. The same hypothesis could be applied to the UWS droplets. Dissolved urea affects the evaporation of water directly [3, 12, 13]. As the urea evaporation rate is very small relatively to that of water, the concentration of urea in the droplet increases. Two different scenarios may occur for the urea depending on the water evaporation rate. When the droplet size is small and/or the vaporization rate of water is low, the concentration of urea throughout the droplet increases uniformly which finally leads to the formation of a solid particle. But, when water vaporizes rapidly, urea concentration increases at the droplet surface which builds up a urea shell around the droplet. This may lead to the boiling of the water inside the urea shell and even to the explosion and fragmentation of the droplet as it has been observed in ref. [14]. Although, this last scenario may occur for large droplets with high heating rate, it is not considered in the present work. In the presented UWS evaporation model, dissolved urea inside or at the droplet surface causes the vapor pressure of water to decrease which consequently decreases the evaporation rate of water compared to that of pure water.

Some authors [3, 13] have considered the effect of urea on water vapor pressure. Birkhold et al. [3] used Rapid Mixing (RM) model to evaluate the influence of dissolved urea on the evaporation of water. In the RM model, infinite high transport coefficients are assumed for the liquid phase, resulting in spatial uniform temperature, concentration and fluid properties in the droplet, with the temporal change in quantities [3, 15, 16]. Kontin et al. [13] as well as Birkhold et al. [3] used the RM model for evaporation of water in UWS. They modified the standard gaseous-film model, proposed by Abramzon & Sirignano [7], by introducing the mass flow reduction coefficient proposed by Reinhold [17]. They proposed three different cases during the evaporation of water and enrichment of urea. In the oversaturated case, urea completely remains in solution, therefore the possibility of an unlimited oversaturation is assumed. In the saturated case, a limited solubility is considered by precipitation of solid crystalline urea out of the liquid phase. In this case, the saturation pressure is described according to Raoult's law. In the crust case, a solid layer is formed at the particle surface during dissolution/evaporation which reduces the mass transfer. A reduction coefficient is then introduced in the evaporation rate expression and adjusted in their study, using an experimental investigation. This model gives relatively good results. However, an exact physical basis for the reduction coefficient would be required.
Several computational studies were carried out to predict UWS thermolysis. Abu-Ramadan et al. [18] studied the evaporation and thermolysis of UWS droplets. They modeled urea depletion from UWS either as a vaporization process or a direct thermolysis process from molten urea to ammonia and isocyanic acid. The formation of by-products (biuret and heavier by-products) was neglected in their study. Birkhold et al. [3] found the rapid mixing model to have the best trade-off between accuracy and numerical effort. However, these studies did not consider the formation of deposits resulting from urea decomposition. Deposit formation can lead to backpressure generation, deterioration of the after-treatment system [19] and possible deactivation of the SCR catalyst [20].

Numerous studies [21-24] indicate that urea decomposes readily in aqueous solution, yielding cyanate (NCO⁻) and ammonium (NH₄⁺) ions. The preferred reaction route seems to go through a zwitterionic intermediate, H₂NCONH [25].

The hypothesis of hydrolysis of HNCO taking place in gas phase [26] seems not to be realistic since HNCO(g) is quite stable in the gas phase [27-29]. However, in solution, cyanate can be readily hydrolyzed to ammonia and carbon dioxide according to the sequence of reactions

\[
\begin{align*}
\text{NCO}^- + \text{H}_2\text{O} (l) & \rightarrow \text{NH}_2\text{CO}_2^- (aq) \quad \text{(R11a)} \\
\text{NH}_2\text{CO}_2^- (aq) + \text{H}_2\text{O} (l) & \rightarrow \text{NH}_3 (g) + \text{HCO}_3^- (aq) \quad \text{(R11b)} \\
\text{HCO}_3^- (aq) + \text{H}^+ (aq) & \rightarrow \text{H}_2\text{O}(l) + \text{CO}_2 (g) \quad \text{(R11c)}
\end{align*}
\]

Carbamate NH₂CO2⁻ ion was identified by Schoppelrei et al. [30]. Although a nucleophilic addition of hydroxide to the carbon of isocyanic acid was suggested by Kemp and Kohnstam [31], a mechanism involving two water molecules attacking its C=N bond was recently proposed by Arroyo et al. [32].

The thermolysis of solid urea resulting from water evaporation from the UWS leads to the production of gaseous products (NH₃, HNCO) as well as heavier by-products (biuret, cyanuric acid, ammelide). As in the case of urea in aqueous solution, the decomposition goes through the formation of NCO⁻ and NH₄⁺ [33]. The formation of biuret was suggested to involve the interaction of urea with NCO⁻ in the melt [34]. The presence of H₂O in gas phase seems to slightly affect solid urea decomposition [35].

Alzueta et al. [36] proposed alternative channels for urea decomposition at very high temperature and pointed out some uncertainties in the HNCO gas-phase oxidation scheme. Recently, quantum chemical calculations [37] indicated that the most favorable urea decomposition pathway in gas phase leads to HNCO and NH₃.

In the present study, the evaporation and thermal decomposition are numerically investigated. In the following section, an UWS evaporation model based on the multi-component droplets evaporation model developed by the authors [10] is suggested. Next, a thermal decomposition model is presented. It is based on a semi-detailed kinetic scheme accounting not only for the production of NH₃ and HNCO but also for the formation of heavier by-products (biuret, cyanuric acid and ammelide).
Modeling

Evaporation Modeling

In the present work, a UWS droplet evaporation model is proposed, based on the multi-component droplet evaporation model developed by the authors [10]. The suggested analysis is based on the conventional conservation equations of species and energy for the gas phase, and the energy balance equation at the liquid-gas interface. The species diffusion is based on the Hirschfelder law [38-40] rather than on the less general Fick's equation. Moreover, the heat flux due to species diffusion is taken into account in addition to the classical conduction heat flux between the gas and the liquid droplets. The liquid phase analysis is based on the infinite thermal conductivity liquid phase model (i.e. Rapid Mixing (RM) model), which has been justified by a reasonably good agreement between the predicted and experimental results [10]. The model relies on the spherical droplet hypothesis with no interaction between droplets. The effects of radiation as well as Soret and Dufour effects are neglected. The one-third rule is used for the properties of the gaseous mixture in the film region around the droplet [41]. Gas phase quasi-steadiness and isobaric assumptions are applied to the model. The resulting governing equations for the model consist of two-phase flow equations for the gas and liquid phases along with the thermodynamic equilibrium condition at the liquid-gas interface. The UWS droplets contain two individual components (i.e. water and urea) and require a two-component evaporation model. However, the evaporation rate of urea is negligible at atmospheric pressure compared to the evaporation rate of water. This behaviour results from the very small vapor pressure of urea, especially at atmospheric pressure. Therefore, the two-component evaporation model has been simplified as follows: only water is evaporated using the single-component evaporation model where the UWS vapor pressure is obtained using the Raoult's law and the Non-Random Two-Liquid (NRTL) activity model [42]. Finally, it is worth to note that the NRTL activity model has been also integrated in the liquid film evaporation model developed by Desoutter et al. [43] in the same manner as for droplet evaporation. Thus, only the evaporation of UWS droplets will be presented in this article.

UWS evaporation model

The proposed UWS evaporation model will be referred as UWS-NRTL. It is described in this section including some details of the activity coefficient calculations using the NRTL model.

Gas phase governing equations

Droplet evaporation models are generally based on the balance equations of mass, momentum and energy. In the mass balance equation of species resolution, it is assumed that there is no chemical reaction in the gaseous environment. This is a good assumption for urea and water species. There is almost no urea vapor in the gaseous environment due to its very low evaporation rate. Besides, the reactions of gaseous species with water vapor are negligible at low temperatures [44, 45]. The gas phase governing equations are used to obtain the mass flow rate and heat flux from the gas to the liquid. These quantities for water evaporation are summarized in the following sections.
Mass flow rate

Based on the previous works, some authors [7, 46] have considered the gaseous boundary layer around the droplet to evaluate heat and mass fluxes. These models give the instantaneous droplet vaporization rate from the integration of the quasi-steady species balance around the droplet. The mass evaporation rate for single-component water droplet is presented as [10]:

\[
\dot{m} = \frac{2\pi r_d \rho_g \left\{ \hat{D}_{wg} \text{Sh}_w \left(Y_w^s - Y_w^\infty \right) - \sum_{i=1}^{N} \hat{D}_{wg} \text{Sh}_i \left(Y_i^s - Y_i^\infty \right) \right\}}{1 - Y_w^\infty} \tag{1.4}
\]

where a modified diffusion coefficient is defined as follows:

\[
\hat{D}_{wg} = D_{wg} \left[1 - X_i + Y_i \sum_{k \neq i} X_k \right] \tag{1.5}
\]

And, \(r_d \) is the droplet radius, \(Y_i^s \) and \(Y_i^\infty \) correspond respectively to the mass fraction of species \(i \) at the droplet surface (superscript \(s \)) and at infinity. \(X_i^s \) is the mass fraction of species \(i \) at the droplet surface. \(\rho_g \) and \(D_{wg} \) are the density and binary diffusion coefficient of species \(i \) into the gas mixture (index \(g \)). The dimensionless Sherwood number is defined as the ratio of the mass fraction gradient at the droplet surface and the average mass fraction gradient:

\[
Sh = \frac{2 r_d \frac{\partial Y_i}{\partial r}_{s=r_d}}{Y_i^s - Y_i^\infty} \tag{1.6}
\]

To consider the effect of natural convection due to volume forces such as the buoyancy force in the gravity field, the following relation is used for the Sherwood number:

\[
Sh = 2.0009 + 0.514 \left(\max \left(\text{Re}, \max \left(\text{Gr}, 0 \right) \right)^{1/2} \right)^{1/2} \text{Sc}^{1/3} \tag{1.7}
\]

where, \(\text{Re} \), \(\text{Sc} \) and \(\text{Gr} \), are the Reynolds, Schmidt and Grashof numbers respectively defined by:

\[
\text{Re} = \frac{\rho_g V_{rel}^2}{\mu_g}, \quad \text{Sc} = \frac{\mu_g}{\rho_g D_g}, \quad \text{Gr} = \frac{8 g_0 r_d^3 (T^\infty - T_d)}{(\nu^\infty)^2 T^\infty} \tag{1.8}
\]

\(V_{rel} \) is the relative velocity between the gas and droplet, \(\mu_g \) is the dynamic viscosity in the gas mixture of the gaseous-film region, \(g_0 \) is the gravity acceleration, \(T^\infty \) and \(\nu^\infty \) are the gas temperature and kinematic viscosity at infinity, \(T_d \) is the droplet temperature. The Grashof number arises in the study of situations involving natural convection. This phenomenon may
occur at the entrance of the SCR system, for instance. Equation (1.7) is the Kulmala-Vesala correlation [47] where the Grashof number is introduced. It is important to note that the physical parameters in the gaseous-film region (with index \(g \)) are evaluated at the reference temperature [41]:

\[
T_{\text{ref}} = T_d + A_r (T^\infty - T_d)
\]

(1.9)

where, \(A_r \) is the averaging parameter. It has been shown by the authors [10] that the one-third rule \((A_r = 1/3) \) gives better results than the arithmetic mean rule \((A_r = 1/2) \).

Gaseous heat flux

During the evaporation process of a droplet, the internal energy of the surrounding gas and its composition evolve simultaneously. In the present study, the heat flux in the gas phase comprises the contributions of the thermal conduction flux and the compositional changes resulting from species diffusion:

\[
Q_g = 2\pi r_d^2 \frac{h_g}{\rho_g} \frac{d}{d r} \left(\frac{T^\infty - T_d}{1 - Y_w^*} \right)
\]

(1.10)

where, \(\lambda_g \) is the heat conduction coefficient, \(h_g (J.kg^{-1}) \) is the specific enthalpy of the vapor at \(T_{\text{ref}} \) and \(Nu \) is the dimensionless Nusselt number defined as:

\[
Nu = -\frac{2r_d}{T_d - T^\infty} \left. \frac{\partial T}{\partial r} \right|_{r=r_g}
\]

(1.11)

Following Kulmala and Vesala [47] for the Sherwood number correlation (1.7), the Nusselt number is defined similarly by:

\[
Nu = 2.0009 + 0.514 \left(\max \left(\text{Re}, \max \left(Gr, 0 \right)^{1/2} \right) \right)^{1/2} Pr^{1/3}
\]

(1.12)

where the Prandtl number, \(Pr \) is the defined as:

\[
Pr = \frac{C_{pg} \mu_g}{\lambda_g}
\]

(1.13)

and \(C_{pg} \) is the specific heat of the gas mixture in the gaseous-film region at constant pressure.

Liquid phase energy equation

As discussed above, droplet surface temperature is assumed to be equal to the mean temperature of the droplet \((T^*=T_d) \). The energy conservation equation for the two-phase
system consisting of the droplet and the surrounding gas mixture allows evaluating the change in liquid droplet energy as:

\[m_d C_{pf} \frac{dT_d}{dt} = Q_l \]

(1.14)

where, \(m_d \) is the droplet mass, \(C_{pf} \) is the specific heat of liquid at constant pressure, \(T_d \) is the temperature of the droplet and \(Q_l \) (J.s\(^{-1}\)) is the heat penetrating into the liquid phase. The energy balance at the liquid-gas interface could be written as:

\[Q_l = Q_g - m L_{v,g} \]

(1.15)

where, \(Q_g \) (J.s\(^{-1}\)) is the heat flux from the gas to the liquid given by Eq. (1.10). \(m \) (kg.s\(^{-1}\)) is the evaporation mass flow rate given by Eq. (1.4) and \(L_{v,g} \) (J.kg\(^{-1}\)) is the mean latent heat of vaporization of all the species in the gaseous-film region around the droplet.

Determination of UWS vapor pressure

The evaporation of droplet consists of resolving two phase flow equations as well as satisfying the thermodynamic equilibrium condition at the liquid-gas interface. This equilibrium is based on the assumption that at the liquid-gas interface, the chemical potential for liquid and gas phases are equal for each species \(i \). The evaporation model for UWS is based on the hypothesis that the vapor pressure of the water changes with the change in the concentration of urea in the solution. The properties of highly non-ideal liquid solutions such as UWS could be estimated with the NRTL activity model. This model takes into account the interactions between the molecules in the liquid phase through the activity coefficient. The activity coefficient \(\gamma \) enables us to modify the fugacity of species in liquid phase.

For a liquid mixture which is in equilibrium with a vapor mixture at the same temperature and pressure, the thermodynamic equilibrium condition for every component \(i \) in the mixture is given by the fugacity.

\[f_i^L = f_i^V \]

(1.16)

where, \(f \) is the fugacity and the exponents \(L \) and \(V \) represent the liquid and vapor phases respectively. The fugacity of liquid phase for every component could be written as [48]:

\[f_i^L = X_i^L \gamma_i \gamma_i^P (T) \]

(1.17)

and for the vapor phase as:

\[f_i^V = X_i^V P \]

(1.18)
In the above equations, X_i^L and X_i^V are the mole fraction of species i in the liquid and vapor phases respectively. P_i^σ is the vapor pressure of component i and P is the pressure at temperature T.

It should be noted that Equations (1.17) and (1.18) are written using the hypothesis that the vapor phase behaves as an ideal solution. This hypothesis is valid at low pressure and high temperature conditions. This choice is then justified in the present work due to the high temperatures and/or low pressures conditions in the exhaust systems. The equality of the fugacities at equilibrium results in the following relationship:

$$X_i^V P = X_i^L \gamma_i P_i^\sigma (T)$$ \hspace{1cm} (1.19)

In the case of UWS, the contribution of urea to the vapor pressure of the solution is extremely low. Then, urea mole fraction at liquid-gas interface can be assumed to be negligible (i.e. $X_u^V \approx 0$). However, the evaporation of water increases the contribution of urea in the UWS. For the liquid-vapor equilibrium of UWS, Equation (1.19) could be simplified to the following relationship:

$$P = X_w^L \gamma_w P_w^\sigma (T) + X_u^L \gamma_u P_u$$ \hspace{1cm} (1.20)

where, the subscripts w and u represent water and urea respectively. Because of the lack of data concerning the vapor pressure of pure urea, P_u is assumed to be equal to the sublimation pressure of urea. The extremely low values of the vapor pressure and sublimation pressure of the urea make it difficult to get the corresponding measured/estimated values of them. The DIPPR [49] proposes the following correlation for the sublimation pressure of urea:

$$\ln P_u = 29.9548 - \frac{10876.1}{T}$$ \hspace{1cm} (1.21)

where the pressure unit is Pa and the temperature unit is K.

NRTL model

Like most of the activity models, NRTL [48] is a local composition model for calculating activity coefficients of species in a mixture with non-idealities. The model is presented with the following Equation:

$$\ln \gamma_i = \frac{\sum j \, \tau_{ij} \, G_{ij} \, X_j^L}{\sum k \, G_{ki} \, X_k^L} + \sum j \, \sum k \, G_{kj} \, X_k^L \left(\tau_{ij} - \frac{\sum k \, \tau_{kj} \, G_{kj}}{\sum k \, G_{kj} \, X_k^L} \right)$$ \hspace{1cm} (1.22)

and

$$\tau_{ij} = a_{ij} + \frac{b_{ij}}{T} + \frac{c_{ij}}{T^2}$$ \hspace{1cm} (1.23)
\[G_{ji} = \exp(-\alpha_{ji} \tau_{ji}) \]
\[\alpha_{ji} = \alpha_{ij} + \beta_{ij} \tau \]

where, \(\gamma_i \) and \(X_i^L \) are the activity coefficient and mole fraction of species \(i \) in the liquid phase. \(a_{ij} \), \(b_{ij} \), \(c_{ij} \), \(\alpha'_{ij} \) and \(\beta'_{ij} \) are the binary interaction parameters of NRTL model. These parameters are regressed from experimental data on liquid-vapor for UWS [42] and presented in Table 3.

The activity coefficients for water and urea are then calculated from Equation (1.22):

\[\gamma_w = \exp \left[\left(X_u^L \right)^2 \left(\tau_{uw} \left(\frac{G_{uw}}{X_u^L + X_w^L G_{uw}} \right)^2 + \left(\frac{\tau_{uw} G_{uw}}{X_u^L + X_w^L G_{uw}} \right)^2 \right) \right] \]
\[\gamma_u = \exp \left[\left(X_u^L \right)^2 \left(\tau_{uw} \left(\frac{G_{uw}}{X_u^L + X_w^L G_{uw}} \right)^2 + \left(\frac{\tau_{uw} G_{uw}}{X_u^L + X_w^L G_{uw}} \right)^2 \right) \right] \]

The saturation pressure is obtained through Equation (1.20) having the sublimation pressure of urea and vapor pressure of water, mole fraction and activity coefficient of water. Figure 7 illustrates the result obtained for the saturation pressure of UWS over the range 298.15 - 647.3 K and for different urea mole fractions in the solution. According to Figure 7, the vapor pressure of UWS decreases by increasing the concentration of urea in the solution. As the mole fraction of urea reaches its highest value (when there is no more water in the UWS), the vapor pressure calculated from Equation (1.20) is the vapor pressure of pure urea. This situation is also shown in Figure 7. As evaporation continues, the concentration of urea in the liquid increases, which may affects the heating and the evaporation of water from the UWS.

Evaporation model implementation

The above UWS Evaporation model (UWS-NRTL) is implemented in IFP-C3D industrial software [50]. An iterative method is needed for the implicit calculation procedure for the mass flow rate, the droplet temperature and the composition at the liquid-gas interface and also in the liquid phase. In this work, a Newton iterative method has been used. The physical and transport properties of the liquid and the gas can be obtained from the estimation techniques and mixing rule as recommended by Reid et al. [51]. From Eqs. (1.4) and (1.10) one can obtain the evaporation mass flow rate and the heat flux from the gas phase to the droplet. The liquid energy equation (Eq. (1.14)) and the energy balance at the liquid-gas interface (Eq. (1.15)) gives the new droplet temperature. The variation of droplet radius is evaluated using the droplet mass \(m_d^n \). The new droplet radius (exponent \(n+1 \)) is obtained by mass conservation:
\[
 r_{nd}^{n+1} = \left(\frac{m_d^n - \dot{m} \Delta t}{4 \pi \rho_l} \right)^{1/3}
 \]

(1.28)

where, \(\Delta t \) is the time step and \(\rho_l \) is the UWS droplet density which is assumed to be constant in each time step. The density of urea is assumed to be constant. However, the density change of water in UWS droplet with the temperature is taken into account using Rackett's correlation [51].

Kinetic modeling

The state of aggregation of urea after the evaporation of water and during the thermal decomposition remains largely unknown [3]. Kontin et al. [13] showed that the impact of oversaturation in UWS leading to urea precipitation can be significant at low temperatures. As a consequence, urea can be present in different forms (solid, dissolved, molten) depending on the operating conditions [52]. Urea, biuret as well as cyanuric acid (CYA) start decomposing before melting, so that the existence of the molten phase is restricted to a quite narrow temperature window [2, 53]. In the present study, the reactions are supposed to take place in solid phase. The development and validation of the kinetic model was performed using the AURORA application of Chemkin 4.1 software [54] which allows the simulation of a continuous stirred tank reactor. However, complementary calculations using continuously stirred reactors (CSTR) in series were performed to investigate the impact of macro-mixing, which was found to be negligible in our case. This is not surprising since the reactants considered in the present kinetic model are exclusively condensed-phase species. According to the mean field approximation, the species are assumed to be randomly distributed on a uniform surface. The urea site density of \(5.3 \times 10^{-10} \) mol.cm\(^{-2} \) is deduced from a tetragonal crystal lattice constant of 0.56 nm [55]. The net rate of formation of \(k \)th species is given by [56]:

\[
 r_k^{\text{reaction}} = \sum_{j=1}^{N_{\text{species}}} \nu_i A'_i \exp \left(\frac{-E_i}{RT} \right) \prod_{j=1}^{N_{\text{species}}} C_{s_j}^{n_{ij}} \text{[mol.cm}^{-2}\text{s]} \]

(1.29)

where, \(\nu_i \) stands for the stoichiometric coefficient of the \(k \)th species in the \(i \)th reaction. \(A'_i \) and \(E_i \) are respectively the pre-exponential factor and activation energy of \(i \)th reaction and \(C_{s_j} \) is the surface concentration of \(j \)th species. \(A'_i \) is linked to the pre-exponential factors \(A_i \) of Table 1 via the site density \(\Gamma \):

\[
 A'_i = \frac{A_i}{\Gamma^{n_i-1}} \text{[cm}^{2n_i-2}\text{.mol}^{n_i-1}\text{s}^{-1]} \]

(1.30)

where, \(n_i \) represents the \(i \)th reaction order. The active surface is calculated from

\[
 S = \sum_{k=1}^{N_{\text{species}}} \frac{m_{k_{\text{initial}}}}{W_k \Gamma} \text{[cm}^2\text{]} \]

(1.31)
where, \(\sigma_k \) corresponds to the number of sites occupied by each molecule of the \(k^{th} \) species. \(W_k \) stands for the molecular weight of the \(k^{th} \) species.

The kinetic scheme used in this study consists of 12 steps (see Table 1). The first nine steps are related to urea thermal decomposition in dry media, whereas the last three steps correspond to the thermal decomposition of urea obtained from UWS. It should be noted that the impact of pH on thermo-hydrolysis kinetics [57, 58] was not considered in the present study.

All rate constants were optimized independently to best match the experimental data given in Table 1. It could be achieved because for each single operating condition, species concentration profiles are generally sensitive to a small set of rate constants and the range of conditions investigated allows complementary reaction sets to be brought into play. This can be quantitatively substantiated using normalized sensitivity coefficients [59] defined by

\[
S_j = \frac{A_j}{C_{S_j}} \frac{\partial C_s}{\partial A_i}
\]

For example, in case 3 (see Figure 3), urea concentration at 500 K is quasi exclusively sensitive to reaction R1.

The biuret decomposition to yield melt urea was considered to proceed in both directions (reactions R4 and R5). Thermodynamic consistency is guaranteed by computing the activation energy of R5 from that of R4 and the corresponding equilibrium constant. The backward steps corresponding to the other reactions were neglected for simplicity purposes. In particular, the adsorption of HNCO(g) or H\(_2\)O(g) was neglected in this modeling study. Indeed, the presence of H\(_2\)O in gas phase was shown to only slightly affect solid urea decomposition [35]. Reactions R1 and R10 involve "solid" and "aqueous" urea, which behave differently towards thermal decomposition [60]. Previous studies [61-63] indicate that the backward step of R1 can be of significance in our conditions. However, for simplicity purposes, we choose to include only the forward step of R1. The activation energies used in this modeling work for R1 and R10 are that recommended by Schoppelrei et al. [21]. Schoppelrei et al. [22] find a pre-exponential factor ranging between 2.19 \(\times \) 10\(^7\) and 3.98 \(\times \) 10\(^7\) s\(^{-1}\) depending on the flow cell used. The optimized pre-exponential factors for R1 and R10 lie respectively slightly below and above the values obtained by Schoppelrei et al. [22] (see Table 1). The activation energy for NH\(_3\)(g) production from NH\(_4\)\(^+\) (reaction R2) is close to the barrier of 41 kJ.mol\(^{-1}\) reported by Donaldson [64]. Reaction R11 corresponds to the sum of reactions R11a, R11b and R11c presented in the literature review. Rate data for this reaction are taken from Schoppelrei et al. [21]. Reactions R6 to R8 rely on the findings of Schaber et al. [34] and Fang et al. [35]. The activation energy of reaction R7 differs clearly from that proposed by Lédé et al. [65], even if both corresponding rate constant values coincide at 647 K. This temperature lies in the range of conditions which is typical of cyanuric acid decomposition (see Figure 5). Note that the rate constant of Lédé et al. [65] was derived from experiments at temperatures higher than 700 K and that its applicability at lower temperatures is therefore not established. This issue is not critical in the present modelling but should deserve a dedicated study.

The present kinetic scheme was validated over a wide range of operating conditions (see Table 2). Figure 1 to Figure 6 present comparisons of modeling results with experimental data. Although mass loss to gas phase is slightly under-predicted for biuret thermolysis (cases 2 and 4), the overall agreement is good. The kinetics of biuret, cya or heavier by-products can probably not be captured perfectly by a simple kinetic scheme involving only interactions
with NCO$. However, the kinetic model performs remarkably well for urea thermal decomposition (cases 1 and 3), which is the scope of this study. It should be also noted that complementary calculations were performed using a 3D code (IFP-C3D) leading to the same results.
Results and Discussion

Impact of urea aggregation state

As shown previously, the model is able to simulate well various experimental concentration profiles. Therefore, we can perform with some confidence rate-of-reaction analyses to interpret the impact of operating conditions on urea thermal decomposition.

In case 7, the production of NCO⁻ by reaction R10 occurs at a lower temperature compared to case 1 (reaction R1). This 50 K shift results (see Figure 9) in the strong reduction of the extent of the pathways leading to polymeric compounds. Rate analyses reveal that this effect is mainly due to the difference between the activation energies of R3 and R12 (or R3 and R4). As R3 has a much lower activation energy than R12, the 50K shift in urea consumption onset has a smaller impact on the corresponding rate constant. The maximum reaction rate of R12 in case 7 is 25 times smaller than the peak of R4 rate observed in case 1, whereas the R3 maximum rate is only affected by about 30%. It should be noted, however, that the concentration effect in the mass action law is very small since NCO⁻ and urea concentration profiles are shifted to the same extent, so that the product of these two concentrations remains nearly unaffected when replacing solid urea by Adblue.

Impact of heating rate

The impact of the slope of the temperature ramp (see Figure 10) has a similar explanation. In this case, the 10 K shift in urea decomposition onset is due to the thermal history of the material. This affects reactions R3 and R12 very differently (see Figure 10) due to the strong discrepancies between the corresponding activation energies. As a consequence, the polymerisation pathway contribution to urea consumption rate strongly decreases. This phenomenon provides an alternative, but not exclusive, explanation to that proposed by Lundström et al. [60], namely that the increase of HNCO gas-phase concentration at higher heating rate can enhance polymerisation. According to this result, it is preferable to operate at lower heat flow rates in order to avoid the formation of heavier by-products.

Impact of gas-phase chemistry

The contribution of gas-phase chemistry in HNCO formation was also studied in the conditions of case 1 using the kinetic scheme of Glarborg et al. [66]. As can be noticed on Figure 11, a slight impact of gas-phase kinetics can be noticed at the higher edge of the temperature range investigated. HNCO spontaneous decomposition kinetics is rather slow in the temperature range investigated [67, 68]. Therefore, the thermal decomposition of HNCO should be triggered by an active species produced by ammelide decomposition. The slight decrease in HNCO concentration is found to be quasi exclusively due to the following reaction:

\[
H + HNCO \rightarrow NH_2 + CO \quad \text{(normalized rate of consumption of 98.9\% at 700 K)}
\] (1.32)
This result is in line with the major reaction pathways reported by Glarborg et al. [66]. According to Glarborg's mechanism, the H radicals are mainly produced by the following reactions

\[
\begin{align*}
\text{NH}^+\text{NH} & \rightarrow \text{N}_2\text{H}^+\text{H} \quad (58\% \text{ at } 700 \text{ K}) \\
\text{NH}^+\text{N} & \rightarrow \text{N}_2\text{H} \quad (35\%) \\
\text{and consumed by} \\
\text{NH}_2\text{H}^+\text{H}^+\text{M} & \rightarrow \text{NH}_3\text{H}^+\text{M} \quad (18\% \text{ at } 700 \text{ K}) \\
\text{NH}^+\text{H} & \rightarrow \text{N}^+\text{H}_2 \quad (43\%) \\
\text{N}_2\text{H}_2^+\text{H} & \rightarrow \text{N}_2\text{H}_3 \quad (15\%) \\
\text{HNCO}^+\text{H} & \rightarrow \text{NH}_2^+\text{CO} \quad (12\%) \\
\end{align*}
\]

It should be reminded that gas-phase consumption of HNCO is dependent on the formulation of reaction R9. This result claims therefore for further investigation of ammelide decomposition chemistry.

Isolated droplet evaporation

The effect of urea on the evaporation of water from UWS (32.5% wt. urea in water) is studied using the UWS-NRTL model. An isolated UWS droplet with the initial diameter and temperature of 100 \(\mu\)m and 293 K is putted on the center of a cube. The stagnant gas consists of nitrogen with the temperature of 673 K and pressure of 1 bar. The results of the model are compared with the numerical results of Kontin et al. [13] for the same conditions. The results of droplet evaporation are illustrated in Figure 8. Figure 8(a) shows the dimensionless droplet mass. Compared to pure water, the results of Kontin et al.[13] show a higher evaporation rate. The new UWS-NRTL model shows a slightly lower evaporation than the pure water case. This result is qualitatively in accordance with the experiments [14]. The difference in mass evaporation rate is due to the presence of urea in UWS. Urea affects the vapor pressure of UWS which leads to the reduction in the mass transfer. Since the NRTL model is used, decrease in the vapor pressure of UWS leads to the decrease in the mass evaporation rate and increase in droplet temperature. Figure 8(b) shows the droplet temperature as a function of urea percentage in the droplet. Having similar heat flux from the gas to the liquid for both pure water and UWS droplets, NRTL model predicts a higher droplet temperature. In fact, the heat flux to the UWS droplet is more dedicated to heat up the droplet than to evaporate it. This behavior is well presented in both Figure 8(a) and Figure 8(b). Figure 8(b) also shows that the UWS droplet temperature exceeds the saturation temperature of the water. This temperature increase could be attributed to the lower vapor pressure of UWS and consequently higher saturation temperature than pure water. The mass fraction of water and urea in UWS droplet is shown in Figure 8(c). Since water evaporates from UWS droplet, its contribution in droplet decreases (Figure 8(c)). The saturation temperature of the UWS then increases by increasing the urea percentage in UWS. According to Figure 8(d), the UWS-NRTL model predicts a higher droplet temperature compared to the pure water. The effect of urea on UWS droplets temperature (Figure 8(d)) seems to be more important that its effect on
water evaporation (Figure 8(a)). Since the decomposition of urea is highly related to the droplet temperature, an inaccurate value of temperature may lead to the uncertainties in the decomposition behaviour. Hence, the UWS-NRTL model allows to accurately calculate the droplet temperature to be used in the thermal decomposition of urea. According to Figure 8(a), water evaporation from UWS continues until it reaches the 32.5% of the droplet mass. The remaining mass in UWS droplet is assumed to correspond to the mass of solid/molten urea.

Conclusion

In the present study, a model accounting for both UWS evaporation and thermal decomposition has been developed. The UWS evaporation sub-model takes into account the non-ideality of UWS due to the dissolved urea. The vapor pressure of urea-water solution is obtained from Raoult's law using the NRTL activity model. The semi-detailed kinetic sub-model relies on the mean-field approximation and describes the evolution of the main reaction products as well as the production and consumption of biuret, cyanuric acid and ammelide. This sub-model has been validated against a wide range of experimental data on urea thermal decomposition. Both evaporation and kinetic model have been implemented on *IFP-C3D* CFD code. The results obtained reveal a slight effect of urea on the water evaporation but a significant effect of UWS temperature especially near the end of the water evaporation. Overall, the agreement between model prediction and experimental species profiles is found to be very good. In line with the experimental data, lower heating rates cause HNCO production to occur at the lower temperatures. It is also predicted that reducing the heating rate causes the importance of the polymerization pathway to decrease as a result of its higher activation energy than that of the direct urea decomposition pathway. The contribution of the hydrolysis pathway is found to be of minor importance under the operating conditions investigated. The contribution of gas-phase chemistry is found to be insignificant for temperatures lower than 700 K. Further investigations on the presence of residual water in urea resulting from complete evaporation [69] are needed.

Acknowledgments

The authors would like to thank Dr. Schaber as well as Mr. Lundström for providing additional information on their experimental setups. Dr Vahid Ebrahimian thanks IFPEN for providing a doctoral grant.
Literature cited

[26] BIRKHOLD F., MEINGAST U., WASSERMANN P. and DEUTSCHMANN O., Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-

[49] DIPPR, Project 801 Evaluated Thermophysical Property Database. V 4.0.0. Ref Type: Generic

[70] Schaber P.M. Private communication. 2010.
Ref Type: Personal Communication

Table 1: Condensed phase kinetic scheme for urea thermal decomposition.

<table>
<thead>
<tr>
<th>Reaction*</th>
<th>A_i (s$^{-1}$)</th>
<th>E_i (kJ.mol$^{-1}$)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R1) urea \rightarrow NH$_4^+$ + NCO$^-$</td>
<td>8.50×10^6</td>
<td>84</td>
<td>[21]</td>
</tr>
<tr>
<td>(R2) NH$_4^+$ \rightarrow NH$_3$(g) + H$^+$</td>
<td>1.50×10^2</td>
<td>40</td>
<td>pw</td>
</tr>
<tr>
<td>(R3) NCO$^- + H^+$ \rightarrow HNCO(g)</td>
<td>6.57×10^2</td>
<td>10</td>
<td>pw</td>
</tr>
<tr>
<td>(R4) urea + NCO$^- + H^+$ \rightarrow biuret</td>
<td>7.87×10^{14}</td>
<td>115</td>
<td>pw</td>
</tr>
<tr>
<td>(R5) biuret \rightarrow urea + NCO$^- + H^+$</td>
<td>1.50×10^4</td>
<td>250</td>
<td>pw</td>
</tr>
<tr>
<td>(R6) biuret + NCO$^- + H^+$ \rightarrow cya + NH$_3$(g)</td>
<td>2.81×10^{18}</td>
<td>150</td>
<td>pw</td>
</tr>
<tr>
<td>(R7) cya \rightarrow 3 NCO$^- + 3 H^+$</td>
<td>1.50×10^{19}</td>
<td>260</td>
<td>pw</td>
</tr>
<tr>
<td>(R8) cya + NCO$^- + H^+$ \rightarrow ammelide + CO$_2$</td>
<td>3.48×10^5</td>
<td>35</td>
<td>pw</td>
</tr>
<tr>
<td>(R9) ammelide \rightarrow 2 NCO$^- + 2 H^+$ + HCN(g) + NH(g)</td>
<td>6.00×10^{14}</td>
<td>220</td>
<td>pw</td>
</tr>
<tr>
<td>(R10) urea (aq) \rightarrow NH$_4^+$ + NCO$^-$</td>
<td>1.20×10^8</td>
<td>84</td>
<td>[21]</td>
</tr>
<tr>
<td>(R11) NCO$^- + H^+$ + H$_2$O (aq) \rightarrow NH$_3$ + CO$_2$(g)</td>
<td>5.62×10^7</td>
<td>59</td>
<td>[21]</td>
</tr>
<tr>
<td>(R12) urea (aq) + NCO$^- + H^+$ \rightarrow biuret</td>
<td>3.93×10^{14}</td>
<td>115</td>
<td>pw</td>
</tr>
</tbody>
</table>

* aq stands for "aqueous" and cya for cyanuric acid. pw : present work
Table 2: Experimental setups used for the validation of the kinetic model

<table>
<thead>
<tr>
<th>Validation case</th>
<th>Volume (cm³)</th>
<th>Flow rate (Ncm³.s⁻¹)</th>
<th>Reactant</th>
<th>Temperature ramp (K.s⁻¹)</th>
<th>Modeling code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [60]</td>
<td>0.054 (cup)</td>
<td>1.67</td>
<td>0.9 mg urea</td>
<td>0.333</td>
<td>IFP-C3D [50]</td>
</tr>
<tr>
<td>2 [60]</td>
<td>0.054 (cup)</td>
<td>1.67</td>
<td>0.25 mg biuret</td>
<td>0.333</td>
<td>Chemkin 4.1</td>
</tr>
<tr>
<td>3 [34]</td>
<td>10 (reactor)</td>
<td>1.00 [70]</td>
<td>30 mg urea</td>
<td>0.167 [70]</td>
<td>Chemkin 4.1</td>
</tr>
<tr>
<td>4 [34]</td>
<td>10 (reactor)</td>
<td>1.00 [70]</td>
<td>30 mg biuret</td>
<td>0.167 [70]</td>
<td>Chemkin 4.1</td>
</tr>
<tr>
<td>5 [34]</td>
<td>10 (reactor)</td>
<td>1.00 [70]</td>
<td>30 mg cyanuric acid</td>
<td>0.167 [70]</td>
<td>Chemkin 4.1</td>
</tr>
<tr>
<td>6 [34]</td>
<td>10 (reactor)</td>
<td>1.00 [70]</td>
<td>30 mg ammelide</td>
<td>0.167 [70]</td>
<td>Chemkin 4.1</td>
</tr>
<tr>
<td>7 [60]</td>
<td>0.044 (monolith)</td>
<td>1.67</td>
<td>2.46 mg Adblue</td>
<td>0.333</td>
<td>Chemkin 4.1</td>
</tr>
<tr>
<td>8 [60]</td>
<td>0.044 (monolith)</td>
<td>1.67</td>
<td>2.46 mg Adblue</td>
<td>0.167</td>
<td>IFP-C3D</td>
</tr>
</tbody>
</table>

Table 3: Binary interaction parameters for NRTL model for urea-water solution [42].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(c_{ij})</th>
<th>(\alpha_{ij})</th>
<th>(a_{12})</th>
<th>(a_{21})</th>
<th>(b_{12})</th>
<th>(b_{21})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0</td>
<td>0.3</td>
<td>7.659</td>
<td>-1.536</td>
<td>-1463</td>
<td>-56.67</td>
</tr>
</tbody>
</table>
Figure 1: Case 1: a) Comparison of modeling results (lines) with experimental concentration profiles (symbols); b) Normalized sensitivity coefficients.
Figure 2: Case 2: a) Comparison of modeling results (lines) with experimental concentration profiles (symbols); b) Normalized sensitivity coefficients
Figure 3: Case 3: a) Comparison of modeling results (lines) with experimental concentration profiles (symbols); b) Normalized sensitivity coefficients.
Figure 4: Case 4: a) Comparison of modeling results (lines) with experimental concentration profiles (symbols); b) Normalized sensitivity coefficients.
Figure 5: Cases 3 to 6: a) Comparison of modeling results (lines) with experimental concentration profiles (symbols); b) Normalized sensitivity coefficients
Figure 6: Case 7: a) Comparison of modeling results (lines) with experimental concentration profiles (symbols); b) Normalized sensitivity coefficients.
Figure 7: Vapor pressure diagram for urea-water solution at different temperatures and different mole fraction of urea in liquid phase.
Figure 8: Comparison of water droplet vaporization with (NRTL model) and without (pure water) presence of urea. The experimental data are extracted from [13]
Figure 9: Comparison of specific reaction rates predicted in cases 1 and 7.
Figure 10: a) Case 8: Comparison of modeling results (lines) with experimental concentration profiles (symbols); b) Comparison of specific reaction rates obtained in cases 7 and 8.
Figure 11: Case 1: Impact of gas phase chemistry [71] on HNCO concentration profile.