Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Pressure at infinity and strong positive recurrence in negative curvature

Abstract : In the context of geodesic flows of noncompact negatively curved manifolds, we propose three different definitions of entropy and pressure at infinity, through growth of periodic orbits, critical exponents of Poincar\'e series, and entropy (pressure) of invariant measures. We show that these notions coincide. Thanks to these entropy and pressure at infinity, we investigate thoroughly the notion of strong positive recurrence in this geometric context. A potential is said strongly positively recurrent when its pressure at infinity is strictly smaller than the full topological pressure. We show in particular that if a potential is strongly positively recurrent, then it admits a finite Gibbs measure. We also provide easy criteria allowing to build such strong positively recurrent potentials and many examples.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas
Contributor : Samuel Tapie <>
Submitted on : Thursday, July 16, 2020 - 6:20:08 PM
Last modification on : Wednesday, November 18, 2020 - 10:58:06 AM


Files produced by the author(s)


  • HAL Id : hal-02901142, version 1
  • ARXIV : 2007.08816



Sébastien Gouëzel, Camille Noûs, Barbara Schapira, Samuel Tapie, Felipe Riquelme. Pressure at infinity and strong positive recurrence in negative curvature. 2020. ⟨hal-02901142v1⟩



Record views


Files downloads