Bienvenue sur la collection HAL du LMV.

 

Le Laboratoire de Mathématiques de Versailles est une unité mixte de recherche (UMR 8100) CNRS - Université de Versailles Saint-Quentin-en-Yvelines, située sur le campus de l’UFR des Sciences.

 

Il est composé de 4 équipes de recherche :

  • Algèbre et Géométrie
  • Analyse et Équations aux dérivées partielles
  • Probabilités et Statistiques
  • CRYPTO

 

Derniers dépôts

Nombre de documents

317

Nombre de notices

269

Mots clés

Equation de Fokker-Planck Optimization Almost periodic function Modular representations Fokker-Planck equation Branching random walk Benchmarking Computer algebra Almost-sure central limit theorem Collisions Concentration inequalities Navier–Stokes system Congruences mod ℓ P-adic Langlands correspondence Entropy Probability tilting Cryptography Zariski Blast actions Evolution equation Stability Complexity Approximate controllability Sensitivity analysis Dynamical systems of the interval Extreme values Empirical Likelihood Théorie des représentations Optimisation Burgers equation Wave equation Ginzburg–Landau equation Long-time behavior Sum rules Equilibrium measure Blowing up Loi forte quadratique Representation theory Controllability Tail inference Dirichlet series Dissipative PDE's Fragmentation Resolution of singularities Carleman estimate Martingale Polar formalism Occupation measures Empirical processes Algebraic geometry Optimal control Ergocity Modular representations of p-adic reductive groups Empirical process Granular media equation Strong mixing Extreme value index Krein-Rutman theorem Moderate deviations principle Calderón projectors Strong approximation Bivariate Brownian bridge Martingales Invariance principle Exponential convergence Absolute regularity Cryptographie Désingularisation AG Uncertainty quantification Growth-fragmentation equation Parametric statistics Unitary ensemble Martingale method Algorithms Anisotropy Inverse problem Estimation Matrices aléatoires Approximate Riemann solver Random censoring Transmission problem Deviation inequality Shallow-water equations Valuations Density estimation Diffusion in a random potential Code optimisation Stationary sequences Positive semigroups Random matrices Concentration inequality Almost automorphic function Spectral measure Coupling method Finite volume method Large deviations Canonical moments Quiver Hecke algebras Hecke algebras