Design of smart metamaterials for vibration control: extension of Bloch approach to handle finite system boundary conditions - Ecole Nationale des Travaux Publics de l'Etat Accéder directement au contenu
Communication Dans Un Congrès Année : 2018

Design of smart metamaterials for vibration control: extension of Bloch approach to handle finite system boundary conditions

Résumé

The design of smart metamaterials for vibration control is usually based on the use of Bloch theorem which considers a single cell with adequate boundary conditions. These boundary conditions correspond to the infinite repetition of the unit cell in 1D, 2D or 3D. Complex geometries and composite systems can then be designed using this approach with finite elements. The control of the elastic waves can be performed by combining Bragg's (wave interferences), resonant's (resonance of a component embedded in the unit cell), damping and/or active control. The energy can then be reected, transmitted, damped, focused or confined in a specific zone of the structure. However, the practical realization of real-life 2D or 3D finite systems may lead to some situations where energy transfers are not in accordance with those predicted by the infinite system considered in the design, because of re ections on the boundary conditions of the finite structure. The behavior of the system may be simulated by full system modelling, but this is time consuming and may lead to huge calculation costs. In this paper, we propose an extension of the Bloch approach to handle finite system boundary conditions in order to be able to identify situations in which energy transfer may arise because of re ections on the border of the elastic domain. Calculations are performed on 2 cells with adequate boundary conditions. The methodology is described and validated using full finite model and experimental tests on a 2D metamaterial structure.
Fichier principal
Vignette du fichier
Billon2017.pdf (915.16 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02140819 , version 1 (15-10-2020)

Licence

Paternité

Identifiants

Citer

Kévin Billon, Morvan Ouisse, Manuel Collet, Emeline Sadoulet. Design of smart metamaterials for vibration control: extension of Bloch approach to handle finite system boundary conditions. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Mar 2018, Denver, United States. ⟨10.1117/12.2300513⟩. ⟨hal-02140819⟩
109 Consultations
125 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More