Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

AN INFINITE CLIQUE OF HIGH-FILLING RAYS IN THE PLANE MINUS A CANTOR SET

Abstract : The study of the mapping class group of the plane minus a Cantor set uses a graph of loops, which is an analogous of the curve graph in the study of mapping class groups of compact surfaces. The Gromov boundary of this loop graph can be described in terms of "cliques of high-filling rays": highfilling rays are simple geodesics of the surface which are complicated enough to be infinitely far away from any loop in the graph. Moreover, these rays are arranged in cliques: any two high-filling rays which are both disjoint from a third one are necessarily mutually disjoint. Every such clique is a point of the Gromov boundary of the loop graph. Some examples of cliques with any finite number of high-filling rays are already known. In this paper, we construct an infinite clique of high-filling rays.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-03251103
Contributeur : Juliette Bavard <>
Soumis le : dimanche 6 juin 2021 - 08:20:40
Dernière modification le : mercredi 9 juin 2021 - 03:14:18

Fichier

infinite_clique_paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03251103, version 1

Citation

Juliette Bavard. AN INFINITE CLIQUE OF HIGH-FILLING RAYS IN THE PLANE MINUS A CANTOR SET. 2021. ⟨hal-03251103⟩

Partager

Métriques

Consultations de la notice

43

Téléchargements de fichiers

16