Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Logarithmic Schrödinger equation with quadratic potential

Abstract : We analyze dynamical properties of the logarithmic Schrödinger equation under a quadratic potential. The sign of the nonlinearity is such that it is known that in the absence of external potential, every solution is dispersive, with a universal asymptotic profile. The introduction of a harmonic potential generates solitary waves, corresponding to generalized Gaussons. We prove that they are orbitally stable, using an inequality related to relative entropy, which may be thought of as dual to the classical logarithmic Sobolev inequality. In the case of a partial confinement, we show a universal dispersive behavior for suitable marginals. For repulsive harmonic potentials, the dispersive rate is dictated by the potential, and no universal behavior must be expected.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-03247353
Contributeur : Rémi Carles <>
Soumis le : jeudi 3 juin 2021 - 09:18:34
Dernière modification le : samedi 5 juin 2021 - 03:40:54

Fichiers

logNLSpot.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03247353, version 1
  • ARXIV : 2106.02367

Citation

Rémi Carles, Guillaume Ferriere. Logarithmic Schrödinger equation with quadratic potential. 2021. ⟨hal-03247353⟩

Partager

Métriques

Consultations de la notice

75

Téléchargements de fichiers

53